
WHITE PAPER 2023 1

ISO/SAE 21434 FROM A
SOFTWARE DEVELOPMENT
PERSPECTIVE
How sound, exhaustive static analysis can help
ensure air-tight automotive cybersecurity while
lowering its costs

WHITE PAPER

November 2023

WHITE PAPER 2023 2

Table of contents

Executive Summary..3

Automotive innovation drives need for greater cybersecurity4

The automotive software security challenge..5

ISO/SAE 21434: Road vehicles – Cybersecurity engineering...........6

Examples of dangerous UBs in automotive SW/FW...........................10

How TrustInSoft Analyzer supports the fulfillment
of ISO/SAE 21434 requirements...12

How TrustinSoft Analyzer enhances the verification
techniques listed in ISO/SAE 21434 ...12

How TrustInSoft Analyzer exceeds the current
state of the art in software analysis tools..15

Case studies...17

Conclusions...18

References..19

About TrustInSoft..21

WHITE PAPER 2023 3

ISO/SAE 21434 FROM A SOFTWARE DEVELOPMENT PERSPECTIVE

Executive Summary
Over recent decades, several technological trends have converged to reshape the automotive industry.
These software-driven trends—which rely on connectivity as well—have transformed motor
vehicles from machines that were mostly mechanical into highly complex, cyber-problems physical
systems.

Unfortunately, dependence upon software and connectivity has made vehicles inviting targets
for malicious software hackers. The resulting growth in attack surfaces has already resulted in some
high-profile cyberattacks on motor vehicles and is driving the auto industry to vigorously address this
threat. Cybersecurity is now a major concern in the sector.

Automotive electronics systems are especially vulnerable to cyberattacks. For example, the
predominant programming language in automotive applications, C/C++, is highly susceptible to
coding errors that create undefined behaviors—the types of vulnerabilities hackers most often
exploit to penetrate embedded systems like automotive components.

To remedy this situation, the Society of Automotive Engineers (SAE) has collaborated with ISO
to develop ISO/SAE 21434: Road Vehicles – Cybersecurity Engineering, an ISO-approved standard
aimed at addressing automotive cybersecurity in a systematic way.

ISO/SAE 21434 specifies a cybersecurity risk management process for automotive systems. As a
process specification, it provides an excellent framework for achieving cybersecurity in motor
vehicles. It does not, however, specify in detail how to prove the absence of vulnerabilities or
demonstrate compliance with the standard. Those specifics are largely left up to the manufacturer.

This is especially true when it comes to integration and verification for cybersecurity in general, and
how to adequately detect and eliminate the vulnerabilities hackers tend to exploit.

In this white paper, we’ll examine:

• The growing trends and challenges the automotive industry faces today

• ISO/SAE 21434 (what it is, what it addresses, what it does not address)

• The rapid growth of attack surfaces in automotive software and firmware

• The extent to which cybersecurity vulnerabilities impact vehicle safety

• Why the software vulnerabilities known as undefined behaviors (UB) are so dangerous to
automotive safety

Finally, we’ll examine how certain tools that leverage mathematical formal methods can complement and
optimize the verification techniques cited in ISO/SAE 21434. We’ll see how these tools can guarantee
the detection and elimination of undefined behaviors earlier in the verification cycle, reduce the costs
and risks associated with ISO/SAE 21434 compliance, and contribute to air-tight cybersecurity in motor
vehicles.

WHITE PAPER 2023 4

ISO/SAE 21434 FROM A SOFTWARE DEVELOPMENT PERSPECTIVE

Automotive innovation drives need for
greater cybersecurity

The automotive industry is undergoing enormous
change. Several megatrends have developed in
parallel over the past several years.1

One of these trends is digitization—the capture
of information within the automotive system and
its conversion to digital messages. The digital
customer connection now affects all aspects of
the value chain, starting with product strategy
development through customer interaction
through sales and after-sales. An example of this
trend is the automated notification of customers
directing them to a qualified service center when
their vehicle self-detects a potential problem.

Powertrain electrification is a second trend that
is very challenging for the industry for several
reasons. The supply chain for electric vehicles
(EV) is fundamentally different from that for
internal combustion engine (ICE) vehicles. The
EV transmission system is decentralized and
simplified, using 30% fewer parts than that of
an ICE vehicle. A major portion of the cost of an
EV is defined by its battery pack, a component
supplied by players who, for the most part, are
new to the industry. Perhaps most important of
all, the competitive differentiators in this market—
including electronics, cooling, and smart power
distribution management—are substantially
defined by software.

Advanced driver-assistance systems (ADAS)
rely on automated technology such as sensors
and cameras to detect nearby obstacles or driver
errors and generate appropriate responses. They
require extensive, highly reliable command and
control communication between components to
carry out their safety-critical tasks.

Just about every automotive OEM has prioritized
autonomous driving (AD) as a strategic growth
area. To succeed, however, they will have to
overcome some stiff challenges. They will
have to guarantee safety and reliability under
all circumstances. This could be a tall order in
situations where human intervention may not be
immediately available. In any circumstance, the
human/machine handover is critical to safety, and
cybersecurity must be assured to prevent lockout
of the human driver and hijacking of the vehicle.

Car sharing and other new mobility concepts offer
mobility without the burdens of car ownership.
These concepts depend on the reliability and
integrity of various features, including:

• Self-service pick-up and drop-off, including
automated valet parking (AVP)

• Client billing

• Vehicle tracking for maintenance

• Theft prevention

WHITE PAPER 2023 5

The common thread among all these trends is
vehicle connectivity. Sufficient mobile connectivity
bandwidth is now available to support a variety
of complex use cases. Vehicles can be connected
to back-end systems and to other vehicles.
They exchange large volumes of data.

Unfortunately, there is also a downside to all this
software and connectivity. Under heavy time-to-
market pressure, automotive OEMs are
depending on many new players to bring
software expertise to the sector. They’re also
relying on numerous open-source technologies to
facilitate interoperability between systems and
suppliers.

These factors have made their latest vehicles ideal
targets for hackers looking to exploit
cybersecurity vulnerabilities.

MITRE defines a cybersecurity “vulnerability” as

“A flaw in a software, firmware, hardware, or
service component resulting from a weakness
that can be exploited, causing a negative
impact to the confidentiality, integrity, or
availability of an impacted component or
components.”2

The automotive software security
challenge
Software security is now a key challenge in the
automotive industry. The potential consequences
of a cyberattack upon a vehicle have become
significantly more severe. These consequences
include:

• Sabotage of vehicle

• Injury and loss of life

• Financial loss through either theft or liability

• Widespread vehicle recalls

• Catastrophic impact on the company’s image

To address the first of these needs, the
Society of Automotive Engineers (SAE) and the
International Organization for Standardization (ISO)
have established a standard cybersecurity
management process for the industry. It’s called:
ISO/SAE 21434: Road vehicles — Cybersecurity
engineering.

All of these features are heavily dependent
on software and connectivity and require the
highest level of cybersecurity.

To meet this new challenge, software
developers in the sector must adopt a robust
cybersecurity management process. In
addition, they must adapt their software
verification activities to better identify and
eliminate the vulnerabilities that software
hackers typically exploit.

WHITE PAPER 2023 6

What it is
ISO/SAE 21434 is a set of guidelines for
cybersecurity in motor vehicles. Created in
response to the growing number of cyberattacks
on cars and trucks, it was developed jointly by ISO
and SAE to establish cybersecurity requirements
for the development of electrical and electronic
components in road vehicles.

ISO/SAE 21434 provides a structured approach
to define and manage cybersecurity goals and
risks. It establishes a rigorous framework to
enable organizations to design vehicles that
are protected against cybersecurity threats. In
addition, it is designed to ensure that cybersecurity
is considered at every stage of the product’s
development, from inception through retirement.

Compliance with ISO/SAE 21434, while mandatory
for all ISO members, is technically voluntary
for the industry as a whole; ISO/SAE 21434 is a
standard, not a regulation. However, automotive
OEMs and suppliers must be compliant with UN
regulation no. 155 (UN R155).3

Relationship to UN R155
UN R155 requires automotive firms to implement
a Cybersecurity Management System (CSMS)
and meet other specific requirements related to
cybersecurity. For the automotive industry, the
requirements of UN R155 are binding and must
be complied with in order to obtain type approval
and market access. Failure to comply can lead to a
sales ban in the corresponding area of application.
More than 60 countries have already committed
to adopting the regulation.

Regulations like UN R155 often refer to various
standards as a thematic point of reference.
UN R155 refers to ISO/SAE 21434. A published
interpretation document of late 2020 directly
relates the requirements of the regulation to the
various requirements of the standard.4

ISO/SAE 21434 thus provides support for meeting
the requirements of UN R155. Put another way, for

companies who must comply with UN R155, ISO/
SAE 21434 has become a de facto requirement.

Minimizing the cost of cybersecurity and
compliance
To prove their compliance with ISO/SAE 21434,
automotive suppliers must demonstrate their
products’ cybersecurity at initial delivery and are
equally liable for that cybersecurity throughout
the entire product lifecycle.

They must define cybersecurity activities that
support the initial product delivery and the entire
life cycle of the product. They must demonstrate
good cybersecurity practices in accordance with
the cyber risk analysis. They must identify, assess,
and mitigate product vulnerabilities.

Furthermore, they are liable for any damages
in the event of a product vulnerability being
exploited by an attacker.

To minimize their overall costs, suppliers need
to define efficient cybersecurity activities at the
beginning of each project to minimize the cost of
those activities over the product’s lifecycle.

ISO/SAE 21434 FROM A SOFTWARE DEVELOPMENT PERSPECTIVE

ISO/SAE 21434: Road vehicles –
Cybersecurity engineering

WHITE PAPER 2023 7

A process-centric standard
From a software development perspective, ISO/SAE 21434 is a process-centric standard focusing on
cybersecurity risk management. It leaves a fair amount of freedom to suppliers in the methods they
use to demonstrate the security of their products. The standard enumerates testing and verification
techniques, but provides no information or guidance on:

• How to employ those techniques individually

• Circumstances in which they are useful

• How to coordinate and combine them

• What is needed from tools to employ those techniques correctly

ISO/SAE 21434 puts the onus on suppliers to identify potential attack vectors and vulnerabilities and
determine how to protect against them. They must do so through their own specific implementation of
the mandatory risk assessment process the standard defines.

Again, in seeking to comply with ISO 21434, it is important that suppliers define efficient cybersecurity
activities from the very beginning of the process in order to optimize efficiency and minimize costs
throughout the product life cycle.

Attack surfaces in automotive systems
In the context of ISO/SAE 21434, cybersecurity risk analysis involves assessing the attack surface of
automotive systems. The term “attack surface” refers to the sum of all potential entry points—direct or
indirect—or vulnerabilities within the system that could be exploited by malicious actors.

Direct entry points refer to those specific components, interfaces, or interactions within the system that
can be directly accessed or targeted by an attacker. Indirect entry points are not directly accessible
or exposed to external entities. They often involve exploiting dependencies or interactions between
various components or subsystems.

Attack surface analysis includes analyses of hardware components, software modules, network interfaces,
external connections, and communication channels.

The recent industry trends discussed earlier are causing a rapid expansion of automotive attack surfaces
driven by the immense volumes of data these new technologies require. Examples of the massive new
attack surfaces being created and expanded include:

• Internal communication networks (CAN, FlexRay, Automotive Ethernet, etc.)

• Can be accessed via the OBD-II port 5

• Can be accessed remotely through any of the growing number of vehicle ECUs6

• Permits access to all ECUs and most critical functions7

• Permits hackers to realize a vast array of attack scenarios, such as: 8

• Spoofing of GPS signals to redirect the car

• Attacks on the mobile communication between the vehicle and external backend data
servers

• Denial-of-Service (DoS) attacks

• Hacking user accounts to get access to personal data

• Attacks on the smart card used for filling the tank

• In EVs

• Real-time data from GPS and mobile networks for battery charge management

• Protocols for electricity billing at charging points

WHITE PAPER 2023 8

• For ADAS and AD

• Data from sensors (radar, lidar, cameras, etc.) for navigation and warnings

• Frequent, high-volume exchange of 3D map data

• Safety-critical procedures for human/machine handoff

• In shared vehicles

• Direct link between the car and backend servers through a mobile connection

• Vehicle-to-infrastructure (V2I) communication for automated valet parking
(AVP)

• In connected cars, in general

• Real-time updating of moving maps, traffic, weather, and local service availability

• Customer services provided by OEMs and third parties

• Over-the-air (OTA) updates for an ever-increasing volume of applications

Source code attack surfaces
While much can be done to secure a vehicle at the system level, a vast portion of the overall attack surface
just described consists of source code. Software hackers will probe a vehicle’s code for vulnerabilities
they can exploit. Therefore, automotive ECUs and other components that rely on software and firmware
must be secured at the source code level as well.

Much of that software and firmware is written in the C/C++ programming language.

Because C/C++ code can run high-level structured programming on low-level mechanisms, it allows
programmers to directly manipulate the hardware on which it runs. This characteristic—along with its
flexibility and its extensive support in terms of knowledge and programming resources—has made C/
C++ the language of choice for automotive ECUs and for embedded systems in general.9

Most of the software and firmware for automotive applications—including ADAS, OTA updating, EV
charging and billing protocols, vehicle connectivity, infotainment and many others—are written in C or
C++. The services software for networking protocols like CAN and FlexRay are programmed in C. The
Automotive Open System Architecture (AUTOSAR) adaptive platform is realized in C++. And all of those
applications rely on real-time operating systems (RTOS) or sequencers that are written in C.

But while C/C++ offers many advantages to automotive software engineers, it also has some
drawbacks. Unfortunately, the flexibility C/C++ offers makes it very easy for coders to make errors that
hackers can leverage for their nefarious purposes. In fact, a study by IOActive found that
automobiles “are plagued by many serious vulnerabilities that malicious actors can exploit to gain
access to a vehicle’s systems.” 10

WHITE PAPER 2023 9

Memory-safety UBs include:

• Buffer overflow

• Integer overflow and underflow

• Use after free

• Null pointer dereferencing

Undefined behaviors
An undefined behavior (UB) is the result of executing a program whose behavior is prescribed to be
unpredictable. UBs can cause programs to crash, produce incorrect results, or permit unauthorized
access. Unauthorized access could allow a hacker to inject malicious input data or malware or alter the
program’s functionality.

Many UBs are what are known as memory-safety defects. The C and C++ programming languages are well
known as being “memory-unsafe languages”. This means that C and C++ do not prevent programmers
from making coding mistakes that can introduce bugs related to how a program uses memory; the C/
C++ compiler has no rules to prevent these conditions and thus allows the code to be compiled.

Besides being very common, UBs are also
very dangerous.

Undefined behaviors are very subtle and very difficult
to detect. They tend to be identified by hackers (white
hat or black hat) who probe software through an
assortment of automated and highly sophisticated
methods. They can’t be discovered through rule
checking or syntactic analysis. Systematic detection
of UBs requires a specialized, purpose-built tool.

Six of Mitre’s CWE Top 25 Most Dangerous Software
Weaknesses in 2022 were undefined behaviors. CWE
stands for Common Weakness Enumeration, Mitre’s
method for identifying and numbering security flaws
in software and a widely accepted reference for
vulnerabilities classification. The rankings were similar
in 2021.

If we look at the occurrences of CWEs in embedded
code and weight the share of each vulnerability based
on its CWE “Score” (Mitre’s method of accounting for
the fact that some vulnerabilities are more exploitable
than others), Buffer Overflows (CWE-787, CWE-125
and CWE-119) represent nearly 50% of embedded
vulnerabilities, as illustrated in Figure 1.

Figure 1: UB share of embedded code
vulnerabilities (2023 CWE Top 25)

Undefined Behaviors as a whole constitute
nearly 69.6% of embedded vulnerabilities
based on Score.

WHITE PAPER 2023 10

Examples of dangerous UBs in
automotive SW/FW

Continental AG Infineon S-Gold 2 (PMB 8876) chipset
An Improper Restriction of Operations within the Bounds of a
Memory Buffer issue (CWE-119, Buffer Overflow) was discovered in
the Continental AG Infineon S-Gold 2 (PMB 8876) chipset in July
2017 (CVE-2017-9633).11 Affected were all telematics control modules
(TCUs) built by Continental AG containing that chipset, and various
vehicles produced by BMW, Ford, Infinity and Nissan.

NIST said this “vulnerability in the temporary mobile subscriber
identity (TMSI) may allow an attacker to access and control memory.
This may allow remote code execution on the baseband radio
processor of the TCU.” NIST gave this weakness a base vulnerability 	

 score 8.8/10 (high).12

In an Industrial Control Systems (ICS) Advisory, the Cybersecurity and Infrastructure Security Agency
(CISA) said, “Successful exploitation of these vulnerabilities could allow a remote attacker to execute
arbitrary code. This may allow an attacker to disable the infotainment system of the vehicle and affect
functional features of the vehicle.” They warned manufacturers that this weakness requires a “low skill
level to exploit” and that “public exploits are available.” 13

The primary mitigation plan for this vulnerability was the deactivation of the component. Affected
vehicles were no longer connected to telematics services, 14 depriving users of some functionality.

Marvell 88W8688 Wi-Fi firmware
In November 2019, an Out-of-bounds Write (Buffer Overflow, CWE-
787) vulnerability (CVE-2019-13582) was identified in the firmware
of the Marvell 88W8688, a highly-integrated, low-cost, low-power,
WLAN and Bluetooth Baseband/RF system-on-chip (SoC).15

This vulnerability allows attackers to bypass the authentication
process and hack into the Tesla Model S/X in-vehicle multimedia
system remotely through the Parrot Faurecia Automotive FC6050W
Bluetooth module. A stack overflow could lead to denial of service or
arbitrary code execution. NIST gave this flaw a base vulnerability score

 Tesla Model S/X vehicles manufactured of 9.8/10 (critical). It affects
before March 2018.16

Researchers from Keen Security Lab demonstrated how this weakness could be exploited remotely
through over-the-air (OTA) communication.17

WHITE PAPER 2023 11

TrustInSoft Analyzer – the ultimate weapon against undefined
behaviors
We mentioned earlier that the systematic detection of undefined
behaviors requires a specialized, purpose-built tool. That tool is
TrustInSoft Analyzer.

TrustInSoft Analyzer is a hybrid code analyzer that combines static
and dynamic analysis techniques together with formal methods to
produce existence proofs of properties that cannot be confirmed
using static techniques only.21 It is the formal methods that are key to
these existence proofs.

Formal methods are ideal for validating code that needs to be
perfect. They use mathematical techniques to “solve” the logic of computer programs or other systems
(integrated circuits, for example) to answer questions about their behavior. For example, if you want to
know if there is any way a buffer overflow could occur in your program, formal methods can be used to
determine that.

TrustInSoft Analyzer is a sound formal methods tool
designed specifically to detect undefined behaviors. An
analyzer is considered “sound” with respect to a specific
guideline if it cannot give a false-negative result—if it finds
all violations of the guideline within the program.

In other words, when TrustInSoft Analyzer is used to exhaustively analyze a program for specific
undefined behaviors, it will find all instances of those undefined behaviors. It will report every UB in your
code. Once those instances have been eliminated, you have an absolute guarantee that those undefined
behaviors cannot occur in the program.

Thanks to its soundness, TrustInSoft Analyzer provides you, your customer, and any regulatory authorities
with proof that no undefined behaviors exist within your software.

QNX Real Time Operating System (QNX RTOS)
In August 2021, BlackBerry publicly disclosed that its QNX Real Time
Operating System (RTOS) is affected by a BadAlloc vulnerability
(CVE-2021-22156).18

NIST characterized this flaw as “an integer overflow vulnerability
[CWE-190] in the calloc() function of the C runtime library of affected
versions of BlackBerry® QNX Software Development Platform
(SDP)… that could allow an attacker to potentially perform a denial
of service or execute arbitrary code.” NIST gave this weakness a base
vulnerability score of 9.8/10 (critical).19

According to CISA, this vulnerability is remotely exploitable. “A remote
attacker could exploit CVE-2021-22156 to cause a denial-of-service condition or execute arbitrary code
on affected devices. A compromise could result in a malicious actor gaining control of highly sensitive
systems.” 20

Possible consequences of the exploitation of this vulnerability could include the loss of vehicle control
due to compromise of safety-critical functions, and injury or death to vehicle occupants or other persons
resulting from an accident.

What’s more, a state-of-the-art formal
methods tool can answer those
questions automatically.

WHITE PAPER 2023 12

What’s more, TrustInSoft Analyzer accounts for the configuration of your target hardware. It
provides target emulation for embedded hardware platforms that enables testing in an environment
that closely resembles your target architecture. Target emulation helps you find vulnerabilities that unit
testing in a host environment cannot possibly reveal. And everything that can change from one
platform to another is configurable in the Analyzer.

Finally, TrustInSoft Analyzer fits neatly into any software development model. It is compliant with the
V-model development life cycle and with Agile methods as well. Plus, it can be fully integrated with
continuous integration frameworks.

How TrustInSoft Analyzer enhances the
verification techniques listed in ISO/SAE 21434
ISO/SAE 21434 provides a flexible and adaptable
framework for organizations to select and
apply appropriate cybersecurity measures. It
also suggests a number of software verification
techniques organizations may choose to use to
help ensure cybersecurity. Among the techniques
it suggests are the application of CERT-C coding
rules, fuzz testing, and penetration testing.

ISO 21434 does not mandate the use of any of these
techniques but acknowledges their relevance and
effectiveness in certain contexts. Organizations
implementing ISO 21434 can choose whether
to incorporate these techniques—and how to
incorporate them—as part of their cybersecurity
measures.

Because of its ability to find and eliminate hard-to-
detect undefined behaviors, TrustInSoft Analyzer
can be used to enhance all the techniques just
mentioned and perform them more efficiently.
We’ll look, in turn, at how it strengthens each of
those techniques.

How TrustInSoft Analyzer supports the fulfillment
of ISO/SAE 21434 requirements
Since TrustInSoft Analyzer was designed to
detect and verify the elimination of undefined
behaviors in software, it directly contributes to the
fulfillment of the requirements of ISO/SAE 21434
section 10.4.2, Integration and Verification. It fully
complies with the requirement “testing should be
performed in order to confirm that unidentified
weaknesses and vulnerabilities remaining in the
component are minimized.”

TrustInSoft Analyzer contributes to the ISO/SAE
21434 goal of cybersecurity risk management
at the software level. It surpass the baseline
techniques cited by ISO/SAE 21434, going beyond
expectations of the standard in three specific
ways.

First, it focuses on in-depth analysis of undefined
behaviors, which are very subtle and difficult to
detect. Second, it finds undefined behaviors early
in the development process and will not miss any
of them (no false negatives). And third, it takes
into account the characteristics of both the target
hardware and the toolchain.

In short, it confirms that there are no undue risks
in your code.

WHITE PAPER 2023 13

CERT C was developed by the CERT Coordination
Center (CERT/CC) of the Software Engineering
Institute (SEI) because of the inherent security
(memory safety) weaknesses of the C/C++
language.22 It currently consists of a set of 122
rules and 180 recommendations. Cert C rules
are meant to provide normative requirements
that, when followed, should improve the safety,
reliability, and security of software systems.

Cert C was developed with input from a wide
range of software experts. The standard is widely
recognized and used by government agencies,
private industry, and academic institutions.

While these benefits are good, it is important
to achieve and verify that the goal of Cert C
compliance is also being achieved.

According to NIST, the goal of CERT C is “to
develop safe, reliable, and secure systems, for
example by eliminating undefined behaviors

that can lead to undefined program behaviors
and exploitable vulnerabilities.”23 This goal
echoes the overarching rule 1.3 of a similar
standard, MISRA C: “There shall be no
occurrence of undefined or critical unspecified
behavior.”

As a sound formal methods tool designed
specifically to detect undefined behaviors,
TrustInSoft Analyzer is ideally suited to helping
software development organizations achieve
the stated goals of CERT C and MISRA C.

An exhaustive analysis with TrustInSoft
Analyzer will identify the location of every
undefined behavior within your code. Because
of its soundness, TrustInSoft Analyzer will
not miss a single undefined behavior. This
significantly reduces the number of residual
vulnerabilities that must be addressed by
other means.

How TrustInSoft Analyzer helps achieve the goals of CERT C

How TrustInSoft Analyzer optimizes fuzz testing
Fuzz testing, also known as fuzzing, is recommended by ISO 21434 (in requirement RC-10-12)
because it has been shown highly effective in uncovering cybersecurity vulnerabilities in software. In
general practice, fuzzing is a software testing technique that rapidly applies large numbers of valid,
nearly valid, or invalid inputs to a program, one after the other, in a search for undesired behaviors
(vulnerabilities).

Fuzzing can be greatly enhanced through the use of TrustInSoft Analyzer. The tool can eliminate the
need to repeat fuzz testing and reduce verification costs. The mathematical guarantees it provides
simplify discussions with customers and regulators.

Fuzzing with TrustInSoft Analyzer will eliminate the vast majority of undefined behaviors in your
code. The tool also provides target emulation for embedded hardware platforms, which allows you
to fuzz your embedded code in an environment that closely resembles your target architecture.

It is important to remember, however, that fuzzing is not exhaustive. To guarantee the elimination of all
undefined behaviors, it is necessary to apply a technique that only TrustInSoft Analyzer provides—a
technique called exhaustive static analysis.

Following Cert C rules:

• Helps to improve the security of
C/C++ code

• Helps to improve the skills of
junior programmers

• Makes code easier to understand

• Makes finding and fixing bugs and
other issues much easier

WHITE PAPER 2023 14

Proceeding to exhaustive static analysis after fuzz testing provides several advantages.

First, it’s exhaustive. It removes every undefined behavior from your code.

Second, it provides you with formal proof—a mathematical guarantee—that can be used as evidence
in reviews with security specialists, customers, and regulators. Because of the tool’s soundness and
the mathematical guarantee it offers, TrustInSoft Analyzer increases the level of confidence between
suppliers and customers.

Finally, having accomplished exhaustive static analysis once for a given program, you’ll find it is much
less work than fuzzing when you modify your code. You’re now working from a much cleaner baseline.
You simply re-run the analyses you’ve already set up.

For detailed information on how fuzzing with TrustInSoft
Analyzer can streamline the elimination of cybersecurity
vulnerabilities, please see our white paper on that topic titled

Fuzzing and Beyond.

https://trust-in-soft.com/wp-content/uploads/sites/13/2023/05/Fuzzing_And_Beyond-1.pdf

WHITE PAPER 2023 15

How TrustInSoft Analyzer exceeds the
current state of the art in software
analysis tools
THE FOLLOWING IS A REVIEW OF THE KEY FEATURES AND BENEFITS
OF TRUSTINSOFT ANALYZER.

How TrustInSoft Analyzer optimizes penetration testing
Penetration testing, also known as pen testing, is a software testing method that seeks to resolve system
vulnerabilities in the same way an attacker will try to find and exploit them.

Penetration testing offers several advantages in achieving good cybersecurity. It helps identify risks
that result from combinations of lower-risk vulnerabilities. It also helps identify risks that are difficult to
detect with other methods. In the end, it helps establish trust with customers.

TrustInSoft Analyzer, through exhaustive analysis, proves the absence of all vulnerabilities caused by
undefined behaviors within the program, and it helps eliminate those vulnerabilities before pen testing
is performed. As a result, it enables pen testers to focus on other aspects of their work and reduce their
work load.

Pen testing should be repeated when significant modifications are made to the product. But since
TrustInSoft allows you to identify and eliminate vulnerabilities early in the testing process, it helps reduce
pen testing iterations and minimizes overall verification cost.

A fully qualified tool for proving UB absence
TrustInSoft Analyzer is a qualified tool for ISO
26262 (Road vehicles — Functional safety) for
all ASIL levels. It has been recognized by the
TÜV SÜD for its capacity to prove the absence
of undefined behaviors in code. As a qualified
tool, its results can be used as evidence to
demonstrate reliable safety and compliance with
ISO 26262.

Exhaustive UB analysis
TrustInSoft Analyzer exhaustively hunts down all
undefined behaviors existing in your software.
That is its main purpose. Once those UBs have
been eliminated, TrustInSoft Analyzer can then
provide verifiable, mathematical proof that your
software is free of undefined behaviors.

Because of its soundness and the mathematical
guarantee it provides, TrustInSoft Analyzer
effectively outperforms all of the verification
techniques listed in ISO/SAE 21434 section
10.4.2.

So while ISO/SAE 21434 does not require tool
qualification, the fidelity of the tool has been
demonstrated to a high confidence level in the
context of the automotive safety standard, ISO
26262.

WHITE PAPER 2023 16

This capability is explained in detail in our white paper
“From Bare Metal to Kernel Code: How Exhaustive Static

Analysis Can Guarantee Airtight Security in Low-level Software
and Firmware.”

Target hardware emulation for embedded applications
In addition, TrustInSoft Analyzer provides a fully representative emulation of the target hardware on
which your code will run. It enables you to precisely specify hardware characteristics such as endianness,
padding, and memory alignment.

Target emulation allows you to verify your code within its target environment much earlier in the software
cycle—without putting the actual hardware in the loop.

TrustInSoft Analyzer also implements a unique feature that faithfully represents the memory mappings
between the program variables and chipset-specific memory regions. This feature allows the tool to
analyze the software in the exact configuration in which it will run on the final hardware.

Thanks to this accurate representation of physical memory access, TrustInSoft Analyzer guarantees the
detection of all memory-related vulnerabilities at the software level.

Faster, more efficient cybersecurity verification

Overall, TrustInSoft Analyzer reduces the amount of effort required to fully test software for cybersecurity
vulnerabilities.

TrustInSoft Analyzer makes it possible to do the equivalent of billions of tests with a single, generalized
test. It drastically reduces the number of vulnerabilities in your code early in the software development
lifecycle, and it reduces the effort and time required to periodically identify and eliminate vulnerabilities
that might be added by modifications during the course of that lifecycle. At the same time, it exhaustively
detects all vulnerabilities resulting from undefined behaviors.

In the end, you have a mathematical guarantee—for the scope of the analysis performed—that your code
is totally free of all undefined behaviors a hacker might exploit.

https://trust-in-soft.com/blog/2022/12/23/how-exhaustive-static-analysis-can-guarantee-airtight-security-in-low-level-software-and-firmware/
https://trust-in-soft.com/blog/2022/12/23/how-exhaustive-static-analysis-can-guarantee-airtight-security-in-low-level-software-and-firmware/
https://trust-in-soft.com/wp-content/uploads/sites/13/2023/02/How_Exhaustive_Static_Analysis_Can_Guarantee_Airtight_Security_And_Reliability_In_Low_Level_Software_And_Firmware.pdf

WHITE PAPER 2023 17

Case studies
To illustrate how TrustInSoft increases the efficiency of software testing for cybersecurity, we’ll look
at three examples of how the tool helped eliminate hard-to-find vulnerabilities in commercial
software and firmware products.

Case study: STMicroelectronics AIS2DW12
Accelerometer Driver Analysis
One of the trends transforming automobiles
into advanced cyber-physical systems is the
integration of dozens of sensors that provide
useful data to a vehicle’s ECUs. This sensor
integration has created a high degree of coupling
among a modern vehicle’s sensor, communication,
and control layers.

Cyberattacks against sensors can therefore
compromise the security of the vehicle. It
is imperative that these sensors’ software
components be totally free of undefined behaviors.

TrustInSoft performed an independent analysis
of the device driver of the STMicroelectronics
AIS2DW12, a 3-axis accelerometer for the
automotive industry. Using TrustInSoft Analyzer,
we were able to identify and fix a buffer overflow
fault in the driver in less than 1.5 hours. That
includes the time we needed to familiarize
ourselves with the sensor’s datasheet and driver.

After the fault was corrected, we ran the test again.
TrustInSoft Analyzer confirmed that no undefined
behaviors remained in the driver regardless of the
hardware’s register contents.

Case study: A leading autonomous driving
platform provider
One of our customers needed a new way
to ensure the safety, reliability, and security of
their software-driven platform. Their goal was to
verify that their ADAS software platform’s
reaction to the position of the vehicle and any
surrounding objects (including living beings)
would not cause any undefined behavior that
would pose risks to the user’s safety or security.

To achieve that goal, they turned to exhaustive
source code analysis using TrustInSoft Analyzer.

Their team ran an analysis on a key library, an
embedded C++ software stack for vehicle maps
and positioning. This collection of C++ classes
stores a map and associated objects in the
autonomous car software framework. It contains
over 300,000 lines of code.

If this analysis were done using traditional testing
methods, executing the code on a number of
discrete input sets, only a very limited portion of
possible vehicle positions on the map could be
covered (as illustrated in Figure 2). Even using a
test framework or a fuzzing tool, one could cover
only a small portion of all possible test cases.

With TrustInSoft Analyzer, however, formal
methods extend test coverage beyond the reach of
traditional tests. TrustInSoft Analyzer generalizes
test inputs through abstraction and exhaustively
detects all undefined behaviors present in the
code (Figure 3).

Through abstraction, TrustInSoft Analyzer was able to test all possible positions of the vehicle
and surrounding objects in a given area. The generalized (abstract) test coverage represented
the equivalent of more than 85 x 1036 possible positions and discrete tests.

Figure 2: Verification coverage using traditional
testing methods

Figure 3: Test coverage using TrustInSoft Analyzer

WHITE PAPER 2023 18

Conclusions
ISO/SAE 21434 is an important standard that provides a good framework for cybersecurity risk
management. It is a standard based on the experience of a community of experts and the latest best
practices in the automotive industry.

In the context of ISO 21434, suppliers need to allocate resources to cybersecurity (both human and
financial) from the outset of every project. Only by managing cybersecurity risk from the very beginning
can they avoid the potential negative cost impacts associated with repetitive activities throughout the
product lifecycle.

Automotive software providers must exhaustively hunt down all undefined behaviors in their code.
These bugs are normally very difficult to detect under standard testing conditions and are typically the
type of vulnerabilities exploited by hackers following product deployment.

Sound and exhaustive static analysis, like that provided by TrustInSoft Analyzer, ensures the cybersecurity
of automotive software. It guarantees the absence of undefined behaviors and can prove that your
software behaves exactly as specified. Exhaustive and sound static analysis tools are a significant,
strategic part of the next-generation automotive software toolchain solution.

TrustInSoft Analyzer helps automotive OEMs and their suppliers comply with ISO/SAE 21434. In
particular, it can contribute significantly to meeting the requirements of Section 10.4.2., which covers
software integration and verification.

TrustInSoft Analyzer contributes to cybersecurity risk management at the software level in several ways:

• It contributes to cost-effective, in-depth analysis of specific cybersecurity risks (undefined
behaviors).

• It proves the absence of undefined behaviors and enables suppliers to demonstrate the security of
their products at initial delivery by detecting vulnerabilities earlier in the verification cycle.

• It reduces the cost of repetitive software testing activities throughout the product’s lifecycle.

• It reduces the frequency of software updates and their associated costs and risks.

• It contributes to reducing corporate risk on a number of fronts, including legal, financial,
brand reputation, and time-to-market.

During the initial analysis, TrustInSoft Analyzer identified a number of undefined behaviors. After the
software was corrected and reanalyzed, TrustInSoft Analyzer was able to provide a mathematical
guarantee of the absence of undefined behaviors in the Maps and Positioning class of the platform for
all possible positions of the vehicle and all objects in its environment.

With total coverage, TrustInSoft Analyzer verified that there would be no software runtime errors that
could jeopardize safety or security.

WHITE PAPER 2023 19

1. Haas, R., and Möller, D., Automotive connectivity, cyber attack scenarios and automotive
cyber security, 2017 IEEE International Conference on Electro Information Technology
(EIT), Lincoln, NE, USA, May 2017, pp. 635-639.

2. CWE Glossary: Vulnerability, MITRE Corp.

3. Sandler, M., UN Regulation No 155: What You Need to Know about UN R155., Cyres
Consulting, June 2022.

4. GRVA, Proposal for the Interpretation Document for UN Regulation No. [155] on uniform provisions concerning
the approval of vehicles with regards to cyber security and cyber security management system, UNECE,
November 2020.

5. Miller, C., & Valasek, C., Adventures in Automotive Networks and Control Units, IOActive, October
2014.

6. Miller, C., & Valasek, C., Remote Exploitation of an Unaltered Passenger Vehicle, IOActive, August
2015.

7. Currie, R., Developments in Car Hacking, SANS Institute, January 2016.

8. Haas, R., and Möller, D., Automotive connectivity, cyber attack scenarios and automotive cyber security,
2017 IEEE International Conference on Electro Information Technology
(EIT), Lincoln, NE, USA, May 2017, pp. 635-639.

9. Pham, G., How is C++ Still Used for the Automotive Industry, InApps Technology, March
2022.

10. Kovacs, E., Cars Plagued by Many Serious Vulnerabilities: Report, SecurityWeek, August
2016.

11. National Vulnerability Database, CVE-2017-9633 Detail, NIST, July 2017.

12. National Vulnerability Database, CVE-2017-9633 Detail, NIST, July 2017.

13. ICS Advisory: Continental AG Infineon S-Gold 2 (PMB 8876), CISA, July 2017.

14. ICS Advisory: Continental AG Infineon S-Gold 2 (PMB 8876), CISA, July 2017.

15. National Vulnerability Database, CVE-2019-13582 Detail, NIST, November 2019.

16. National Vulnerability Database, CVE-2019-13582 Detail, NIST, November 2019.

17. Exploiting Wi-Fi Stack on Tesla Model S, Tencent Keen Security Lab, January 2020.

18. ICS Advisory: BadAlloc Vulnerability Affecting BlackBerry QNX RTOS, CISA, August 2021.

References

https://ieeexplore.ieee.org/document/8053441
https://ieeexplore.ieee.org/document/8053441
https://cwe.mitre.org/documents/glossary/index.html#Vulnerability
https://www.cyres-consulting.com/un-regulation-no-155-requirements-what-you-need-to-know/
https://unece.org/fileadmin/DAM/trans/doc/2020/wp29/WP29-182-05e.pdf
https://unece.org/fileadmin/DAM/trans/doc/2020/wp29/WP29-182-05e.pdf
https://ioactive.com/pdfs/IOActive_Adventures_in_Automotive_Networks_and_Control_Units.pdf
https://ioactive.com/pdfs/IOActive_Remote_Car_Hacking.pdf
https://www.sans.org/reading-room/whitepapers/ICS/developments-car-hacking-36607
https://ieeexplore.ieee.org/document/8053441
https://www.inapps.net/how-is-c-still-used-for-the-automotive-industry/
https://www.securityweek.com/cars-plagued-many-serious-vulnerabilities-report/
https://nvd.nist.gov/vuln/detail/CVE-2017-9633
https://nvd.nist.gov/vuln/detail/CVE-2017-9633
https://www.cisa.gov/news-events/ics-advisories/icsa-17-208-01
https://www.cisa.gov/news-events/ics-advisories/icsa-17-208-01
https://nvd.nist.gov/vuln/detail/CVE-2019-13582
https://nvd.nist.gov/vuln/detail/CVE-2019-13582
https://keenlab.tencent.com/en/2020/01/02/exploiting-wifi-stack-on-tesla-model-s/
https://www.cisa.gov/news-events/cybersecurity-advisories/aa21-229a

WHITE PAPER 2023 20

19. National Vulnerability Database, CVE-2021-22156 Detail, NIST, August 2021.

20. ICS Advisory: BadAlloc Vulnerability Affecting BlackBerry QNX RTOS, CISA, August 2021.

21. Black, P.; Badger, L.; Guttman, B.; Fong, E.; Dramatically Reducing Software Vulnerabilities: Report
to the White House Office of Science and Technology Policy; National Institute of Science and
Technology (NIST), November 2016.

22. SEI CERT C Coding Standard: Rules for Developing Safe, Reliable, and Secure Systems (2016 Edition), SEI,
June 2016.

23. The Bugs Framework/CERT C Coding Standard, NIST.

https://nvd.nist.gov/vuln/detail/CVE-2021-22156
https://www.cisa.gov/news-events/cybersecurity-advisories/aa21-229a
https://csrc.nist.gov/CSRC/media/Publications/nistir/8151/draft/documents/nistir8151_draft.pdf
https://csrc.nist.gov/CSRC/media/Publications/nistir/8151/draft/documents/nistir8151_draft.pdf
https://resources.sei.cmu.edu/library/asset-view.cfm?assetID=454220
https://samate.nist.gov/BF/Enlightenment/CERT C.html

WHITE PAPER 2023 21

Founded in 2013, TrustInSoft developed a game-changing product for software code analysis.
TrustInSoft Analyzer is a hybrid code analyzer that combines advanced static and dynamic
analysis techniques together with Formal Methods to mathematically guarantee C/C++ code
quality, reliability, security and safety. TrustInSoft has customers worldwide in the automotive,
IoT, telecom, semiconductor, aeronautics and defense industries. TrustInSoft has received
awards and recognition from the NIST, RSA and Linux Foundation.

To learn more about TrustInSoft Analyzer, visit

trust-in-soft.com/product/trustinsoft-analyzer.

If you’d like to speak with a TrustInSoft technical representative about how TrustInSoft Analyzer
can meet your organization’s specific needs, contact us by email at

contact@trust-in-soft.com

Phone : +33 1 84 06 43 91 or +1 (408) 829-5882

Since our beginnings, TrustInSoft Analyzer has been adopted by industry-leading companies
around the world to ensure sound cybersecurity in their low-level code.

http://trust-in-soft.com/product/trustinsoft-analyzer

	3
	4
	5
	6
	10
	12
	12
	15
	17
	18
	19
	21

	Button 29:
	Button 30:
	Button 31:
	Button 32:
	Button 33:
	Button 34:
	Button 35:
	Button 36:
	Button 37:
	Button 38:
	Button 39:
	Button 40:
	Button4:
	Button5:
	Button6:
	Button7:
	Button8:
	Button9:
	Button10:
	Button11:
	Button12:

