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FUZZING AND BEYOND

Fuzzing and Beyond

The rapid growth in the connectivity of software-
driven products to Wi-Fi and cellular networks 
and the internet—in industries that include 
consumer electronics, smart home and office, 
IoT, industrial automation, automotive, aerospace 
and defense—has been forecast to continue for 
the foreseeable future.1,2

That growth has engendered a corresponding 
growth in attack surfaces and, subsequently, 
an increasing interest in exploiting those attack 
surfaces on the part of unscrupulous hackers 
and unfriendly governments. In short, the cyber 
threat is here to stay.

Countering that threat has become critically 
important to businesses and has resulted in a 
growing interest in the use of fuzzing on the part 
of both software development organizations and 
security specialists.

Fuzzing is a software testing technique that 
applies vast numbers of input combinations to 
a target program very rapidly, in an automated 
manner. By generating these inputs semi-
randomly, fuzzing can test combinations the 
developer may not have anticipated while saving 
the developer the tedium of manually defining 
individual test cases. The goal is to reveal hard-
to-find vulnerabilities that are rarely caught by 
conventional software testing.

Hackers frequently use fuzzing tools to find 
loopholes in code—untested input values that 
create unexpected behavior they can exploit 
remotely. They wait patiently while their fuzzer 
applies millions of random inputs until, finally, it 
uncovers a flaw that suits their purposes. 

To unleash havoc, a hacker need only find a 
single vulnerability the developer failed to 
correct before release. That puts software 

vendors at a distinct disadvantage.

While testing for corner cases is a best practice, 
development teams need to go further. Under 
time-to-market pressure, they need new 
methodologies for efficient verification. Unlike 
hackers, they can’t be satisfied with stumbling 
upon one exploitable vulnerability. They need to 
find and fix all the vulnerabilities they can while 
maintaining their release schedule.

A large proportion of issues in C/C++ code that 
are exploited by hackers is so-called undefined 
behavior. Undefined behavior is a technical 
term that includes all sorts of runtime errors 
such as buffer overflows, division by zero, null 
pointers, etc. Fuzzing is a great first step for 
uncovering undefined behavior that normal 
testing is not designed to catch. However, even 
the best fuzzers are not designed to catch every 
vulnerability, either because the fuzzer did not 
select the input that causes the problem or 
because the problem happened but there was 
no visible manifestation of it (so the fuzzer is 
unaware of the problem); they need to be paired 
with analysis tools that are.

What’s more, for critical applications, it’s often 
necessary to go beyond fuzzing to ensure 
airtight cybersecurity.

In this white paper, we’ll examine fuzzing: what 
it is, who uses it, how they use it, its benefits, 
its limitations, and how those limitations can be 
mitigated. We’ll also look at circumstances in 
which development teams need to go beyond 
fuzzing, along with some tools and methods 
that can guarantee the complete elimination of 
all exploitable vulnerabilities in your software or 
firmware.

We’ll begin with the most basic question… 

What is fuzzing?
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What is fuzzing?
To answer this question, it’s best to start with a few definitions (located in the orange box to the left). 
We will use those from a recent survey of the published work on fuzzing titled, “The Art, Science, and 
Engineering of Fuzzing: A Survey” (Manès et al).3 Its authors’ intent was to consolidate and distill as 
much of the available research as possible and to resolve discrepancies between the various sources.

Motivations and principles of fuzzing

Programmers often make many assumptions concerning 
the structure and contents of the data their programs 
handle internally. 

For example, an application may store in memory an 
array of a certain size and use a variable to indicate 
this size. If at some point the actual size of the array 
does not match what is stored in the size variable, then 
the assumption is broken, and the internal state of the 
application is invalid. This may, of course, cause severe 
problems. In our example, an out-of-bounds write—which 
could result in a crash or an arbitrary code execution if 
exploited by an attacker—is quite possible.

Furthermore, even if the program’s internal data 
manipulation logic is flawless, its internal state still may 
become corrupted when it reads data from the outside. 
All external information entering the application, whether 
it be a command line parameter or a collection of bytes 
received through a network socket, must be properly 
verified and either accepted as valid or rejected as 
invalid.

If the program is completely correct, safe, and secure, 
then it should recognize and gracefully reject any invalid 
inputs. However, due to programming oversights or 
other anomalies, invalid inputs are not always caught at 
the frontier. Some may be accepted inside the program, 
invalidating its internal state. This is especially prone to 
happen when external data validation is not a trivial task. 

Applications that handle complex structured inputs—
communications using specific protocols or employing 
specific file formats for information storage, for 
example—are especially vulnerable.

This is where fuzz testing can be deployed with great 
effect. Fuzzers attempt to generate invalid, unexpected, 
or completely random data to feed a given program in 
the hope of discovering any holes in its input verification. 
Basically, their aim is to detect the situations when the 
program accepts an invalid input as valid. 

Although there are different approaches to generating 
such inputs, many fuzzers skim along the valid/invalid 
input border. They attempt to generate inputs that are 
almost valid but contain some subtle invalidity or expose 
an obscure corner case.

Fuzzing

The term “fuzz” was coined by Miller et 

al in 19904 to refer to the actions of an 

automated testing program that “generates 

a stream of random characters to be 

consumed by a target program.”5 

Manès et al define fuzzing as,

The execution of a PUT (Program Under 

Test) using inputs sampled from an 

input space (the “fuzz input space”) that 

protrudes the expected input space of the 

PUT 6

By “protrudes” the authors mean they 

consider fuzz inputs to be inputs that the 

PUT may not be expecting. They point 

out that “the sampling process is not 

necessarily randomized,” as it had been 

originally envisioned, and “in practice, 

fuzzing almost surely runs for many 

iterations.”7 

In general practice, fuzzing is a software 

testing technique that rapidly applies 

large numbers of valid, nearly valid, or 

invalid inputs to a program, one after the 

other, in a search for undesired behaviors 

(vulnerabilities). 

By “nearly valid” inputs, we mean inputs 

that meet the expected form of the 

input space but contain values that are 

malformed or unexpected. The idea is to 

automatically generate inputs for the tested 

program, trying to find such parameters 

and input data that cause the program to 

misbehave in some way. This may result in 

a safety or security flaw, such as a crash, 

memory leak, or arbitrary code execution.

Ultimately, the goal of fuzzing is 

to automate the process of finding 

vulnerabilities by generating a large number 

of test inputs that exercise a program or 

system in ways that are unexpected or that 

stress its functionality.



WHITE PAPER 2023 5

FUZZING AND BEYOND

What is fuzzing? Continued
Testing corner cases

A corner case is a test case that tests the program or 
system at the extreme limits of its intended inputs and 
conditions. This can include inputs that are outside the 
normal range of values, inputs that are specifically designed 
to stress the program or system, inputs that violate 
assumptions or constraints of the program or system, and 
inputs that would not be encountered in normal use.

Corner cases are important to test because they can reveal 
security vulnerabilities that may not be detected through 
normal testing methods. By testing these cases, software 
developers can ensure that their programs or systems 
behave correctly and securely even under unusual or 
unexpected conditions.

Typical uses of fuzzing

In a nutshell, fuzzing is used to expose flaws in a software 
program. Historically, it has been found extremely efficient 
in detecting safety and security issues, both in applications 
and operating systems.

While fuzzing can be used as a part of any general-purpose 
software testing program, it is most useful (and most used) 
in a cybersecurity context. It helps improve robustness 
against malicious penetration via unanticipated inputs. 

In short, fuzzing can be used to detect all kinds of 
vulnerabilities, but it is most often used to uncover security 
vulnerabilities.

Fuzz testing

Whereas fuzzing has been defined as 

merely exercising a PUT with fuzz inputs, 

fuzz testing has the goal of verifying the 

fitness of the PUT against a specification. 

In general, fuzz testing can be defined as a 

form of software testing that uses fuzzing.

Manès, et al, consider fuzz testing to have 

the specific goal of finding security-related 

vulnerabilities, as this is its predominant 

application. Hence, their definition of fuzz 

testing is: The use of fuzzing to test if a PUT 

violates a security policy.8 

Fuzzer

A fuzzer, also called a fuzzing engine, is: 

A program that performs fuzz testing on a 

PUT9 

Fuzz campaign

According to Manès et al, a fuzz campaign 

is: A specific execution of a fuzzer on a PUT 

with a specific security policy10 

Though, as they point out, “fuzz testing can 

actually be used to test any security policy 

observable from an execution,” not just one 

specific security policy.11

Bug oracle

The term oracle may call to mind figures 

from Greek mythology like the priestess to 

Apollo at Delphi or the Sibyls, the oracles 

through which the gods were believed to 

speak. In fuzzing, the bug oracle (or simply, 

the oracle) is the device that determines 

what the PUT’s response should be to a 

given fuzz input.

To reflect common fuzzing practice, Manès, 

et al, define a bug oracle as: A program, 

perhaps as part of a fuzzer, that determines 

whether a given execution of the PUT 

violates a specific security policy.12 
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What is fuzzing? Continued

Typical users

Who uses fuzzing? In general, potential users include 
anyone interested in detecting security vulnerabilities.

More specifically, typical users fall into three general 
categories.

Hackers (black hats) use fuzzers and fuzzing with 
malicious intentions. Their aim is to detect security 
vulnerabilities they can exploit, so they can take control 
of the software for financial or espionage motives.

The second group, software security researchers (white 
hats) frequently employ the same methods as black hats. 
They typically use fuzzing to discover security flaws 
in new software. They then report their findings to the 
software vendor, so the latter can correct the defect 
found before black hats can cause them any damage.

The third group includes software developers, 
penetration testers, and other software testers. This 
group generally uses somewhat different tools and 
methods than black hats and white hats, because they 
have access to the source code. They need to do a far 
more thorough job than hackers, who only need to find 
one vulnerability they can exploit.

Next, we’ll look at the differences between the various 
fuzzing tools and methods these groups use.

This definition implies that a single oracle 

need not and often does not cover ALL 

security policies. We’ll see later that this 

partial coverage of security policies (like 

CWEs) is a disadvantage. And while it is 

common for a bug oracle to be partial, that 

is not necessarily the case for all oracles.

Fuzz algorithm

Very simply, a fuzz algorithm is:

The algorithm implemented by a fuzzer13 

These vary significantly from fuzzer to 

fuzzer, depending on the area within the 

fuzzing space a specific fuzzer addresses.

Fuzz configuration

A fuzz configuration of a fuzz algorithm 

comprises the parameter value(s) that 

control(s) the fuzz algorithm.14

The types of values in a fuzz configuration 

depend upon the type of the fuzz 

algorithm. Fuzzers typically maintain a 

collection of “seeds,” and some fuzzers 

evolve the collection as the fuzz campaign 

progresses.15 

A seed is a (commonly well-structured) 

input to the PUT used to generate test 

cases by modifying it. The collection of 

seeds maintained by a fuzzer is called a 

seed pool.16 

Fuzzers are normally able to store some 

data within each configuration. A coverage-

guided fuzzer, for example, may store the 

attained coverage in each configuration.17
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Commonly Used Fuzzing Tools
Tools commonly used for fuzzing include fuzzing 
engines, fuzzing infrastructures and frameworks, 
and libraries.

Fuzzing engines

Fuzzing engines, commonly referred to as 
fuzzers, are not all created equal. They can be 
characterized along a number of lines, as the 
space is highly multi-dimensional. It is important 
to choose a fuzzer that is well-suited to your 
application. We will look at a number of ways in 
which the fuzzer space is segmented.

Need for source code

Fuzzing engines can be either compiler-based or 
binary-only.

Compiler-based fuzzers require access to the 
source code. They include a special compiler 
for the target programming language that adds 
lightweight instrumentation to the PUT when 
compiling it. That instrumentation typically 
collects coverage data during the fuzz campaign 
or provides data to the oracle function.

State-of-the-art fuzzers also use compilers 
to apply fuzzing-enhancing transformations 
that improve the execution speed of the PUT, 
enable easier penetration, and track interesting 
behaviors.18

Binary-only fuzzers are designed for situations 
where source code is unavailable. In practice, 
many fuzzing use cases are binary only, 
especially for security researchers working 
on closed-source, proprietary, or commercial 
software. Such fuzzers are restricted to binary 
instrumentation.19 

Until very recently, available options for binary-
only fuzzing have been unable to match the 
speed and transformation of their compiler 
counterparts, thus limiting their effectiveness.20,21 

Awareness of program structure

Black-box fuzzers are unaware of the internal 
structure of the PUT. They observe only the 
target program’s input/output behavior, treating 
it as a “black box” they can’t see inside. Most 
early fuzzers were of this type. Some modern 
black-box fuzzers like Funfuzz22 and Peach23 take 
the structure of the PUT’s inputs into account 

to generate more meaningful test cases without 
inspecting the source code.24

Black-box fuzzers are commonly used by hackers 
due to their ease of use and versatility. They are 
also used by white-hat security professionals 
who do not have access to the source code or 
who are assessing the likelihood of exploitation 
by hackers under such conditions.

White-box fuzzers generate test cases by 
analyzing the code structure of the PUT and the 
information they gather during execution. With 
this information, they are able to explore the 
target program’s execution paths systematically.

The term “white-box fuzzing” was introduced 
by Patrice Godefroid to refer to fuzz testing that 
employs dynamic symbolic execution (DSE), 
a variant of symbolic execution.25The term is 
also used to describe fuzzers that employ taint 
analysis.26White-box fuzzing typically incurs 
much higher overhead than black-box fuzzing, 
partly because DSE implementations tend to 
employ SMT (Satisfiability Modulo Theories) 
solving and dynamic instrumentation. They 
require more work to set up and their processing 
is much slower.27 

Grey-box fuzzers occupy a middle ground 
between the two extremes. Unlike black-box 
fuzzers, they can gather some information 
from inside the PUT to assess its structure and/
or its executions. Unlike the white-box variety, 
grey-box fuzzers do not reason about the full 
semantics of the PUT. Instead, they tend to 
limit their investigation to performing some 
lightweight static analysis and/or gathering some 
dynamic execution data, like code coverage. 
Grey-box fuzzers aim to strike an effective 
balance between execution speed, ease of use, 
and ensuring broad test coverage.28 

Coverage-guided grey-box fuzzing is probably 
the most successful fuzzing approach. This 
method adds a feedback loop to keep and 
mutate only the few test cases reaching new 
code coverage. The rationale behind it is that 
exhaustively exploring the target code will likely 
reveal more vulnerabilities. Coverage is collected 
via instrumentation inserted into the target 
program at compilation.29Widely successful 
coverage-guided grey-box fuzzers include AFL,30 
AFL++,31 libFuzzer,32 and honggFuzz33.
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How inputs are generated

Mutation-based fuzzers take the seeds (valid 
inputs) in their seed pool and generate collections 
of fuzz inputs by altering (mutating) them, mostly 
by bit manipulation, into forms that may be valid 
or invalid.

Generation-based fuzzers take the valid input 
structure provided to them, analyze it, and 
generate entirely new inputs that match the valid 
input structure.

Awareness of input structure

Dumb (unstructured) fuzzers produce completely 
random inputs that do not necessarily match 
the prescribed format of the expected input. 
Most early fuzzers were of this type. Due to their 
simplicity, dumb fuzzers can produce results with 
little work, but their coverage will be extremely 
limited. Such primitive fuzzers are unlikely 
to produce sufficient results to help ensure 
cybersecurity.

Through awareness of input structure, smart 
(structured) fuzzers can generate randomized 
inputs that are valid enough to pass program 
parser checks and penetrate deep into the 
program logic. These require more work to set up 
compared to dumb fuzzers since the user must 
define for the fuzzer the target program’s input 
format, but they are far more likely to trigger 
edge cases and find vulnerabilities thanks to 
greater code coverage.

Types of inputs generated

Many fuzzers are optimized for fuzzing specific 
types of input formats, including:

Figure 1: Genealogy tracing significant fuzzers’ lineage back to Miller et al.’s seminal work. Each node in the same row represents a set of fuzzers appeared in the same 

year. A solid arrow from X to Y indicates that Y cites, references, or otherwise uses techniques from X.  denotes that a paper describing the work was published.

Source: Manès, V., et al, The Art, Science, and Engineering of Fuzzing: A Survey, IEEE, October 2019.

•File

•Network

•Kernel I/O

•UI

•Web

•Thread (concurrency)

These specializations 
crosscut the other 
categories listed earlier.

Manès et al produced 
a fuzzer genealogy 
(Figure 1) that illustrates 
how the fuzzer space 
is subdivided along the 
lines just described.
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Fuzzing infrastructures and 
frameworks
A large-scale user of fuzzing to test its own software, Google has developed a number of scalable 
fuzzing tools. Among these, the most notable are ClusterFuzz and OSS-Fuzz.

ClusterFuzz is a distributed fuzzer execution environment and reporting tool. Essentially, it is a 
scalable fuzzing infrastructure. ClusterFuzz forms the fuzzing backend for OSS-Fuzz.34 

OSS-Fuzz is a framework that combines fuzzers and provides scalable execution for the fuzzing 
of open-source software (OSS).35It combines modern fuzzing techniques with scalable, distributed 
execution. Along with ClusterFuzz, OSS-Fuzz supports the libFuzzer, AFL++, and Honggfuzz fuzzing 
engines in combination with a number of Sanitizers.36

Benefits of fuzzing with state-of-the-art fuzzing tools

Fuzz testing with state-of-the-art fuzzing tools offers software development organizations a number 
of significant benefits.

First, most fuzzing tools are relatively easy to use. This is especially true of black-box and grey-box 
fuzzers, which cover the vast majority of use cases.

Second, fuzzing rapidly expands your testing campaigns. It allows you to quickly and easily extend the 
scope of your unit tests, and it can be used in both unit testing and integration testing.

Next, fuzzing rapidly expands the code coverage of your testing. White-box and grey-box fuzzers 
typically include compilers that add code instrumentation that collects coverage data. In addition, the 
fuzzing algorithms of sophisticated fuzzers like AFL contain logic for directing coverage while limiting 
redundant cases and economizing campaigns. These facilities can quickly increase code coverage at 
the beginning of your test campaign by 60% to 80% compared to normal unit testing.

Finally, fuzzing can be easily scaled, parallelized, and combined with other techniques like static 
analysis and dynamic analysis.

While fuzzing offers several advantages, it is not without its limitations. It would be a mistake to view 
fuzzing as an exhaustive approach to ensuring code quality or security. It’s important to know what 
those limitations are to specify the role fuzzing should play in the verification of a given application. 
We will examine several of those limitations next.

Fuzzing libraries

To make “brute force testing less brutish,” the FuzzDB Project has developed “the first and most 
comprehensive open dictionary of fault injection patterns, predictable resource locations, and regex for 
matching server responses.”37

FuzzDB contains lists of attack payload primitives (fuzz inputs) for fault injection testing that increase 
the likelihood of finding application security vulnerabilities. These are categorized by attack and, 
where appropriate, platform type.
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Limitations of Fuzzing
Finding meaningful inputs can take significant 
time

Fuzzing generally requires a preliminary phase 
of running the fuzzer to “find” meaningful inputs. 
This can take significant time. In addition, you 
need to re-run fuzzers regularly as your code 
changes.

Of course, one’s definition of “meaningful” will 
depend upon one’s use case and objective. 
Many fuzzers do not solve the difficult problem 
of generating meaningful inputs, but simply 
generate a lot of them hoping that some will 
be interesting. The idea is that—since modern 
computers are so fast that it takes only a very 
small fraction of a second to run the code on 
the inputs—you might as well generate plenty 
of inputs and see which ones cause something 
interesting to happen.

As mentioned earlier, more sophisticated grey-
box fuzzers will refine and improve their input 
seeds to explore promising areas and try to 
find more vulnerabilities. Nonetheless, fuzzing 
is clearly an iterative process. Any instance of 
the PUT can only be tested for one fuzz input at 
a time, and complex input profiles can present 
billions upon billions of possible test cases.

For example, a 256-bit input file offers 2256 

(>1.15x 1077) possible permutations. Even with 
fast computers and parallel processing, fuzzing 
an entire input space of that size would be 
prohibitive in terms of both time and cost.

Fuzzing engines generate fuzz inputs in a semi-
random fashion. That means even the best 
fuzzing algorithms will produce a significant 
number of redundant inputs and accordingly run 
redundant tests.

What you can do—thanks to the instrumentation 
inserted by the fuzzer’s compiler—is measure 
code coverage and the relevance of individual 
inputs based on the coverage they produce.

Coverage-based grey-box fuzzers can adjust 
their seed pools to reduce redundant tests. In 
general, however, it is very difficult to generate 
inputs that reach all the parts of the source code. 
Coverage tends to remain well below 100%.

Fuzz testing may be insufficient for testing 
embedded code

Embedded software is typically designed to run 
on specific embedded hardware, like an ARM 
RISC processor, for instance. 

Good fuzz testing requires that you run as 
many fuzz inputs as possible. To make that 
cost-effective, those inputs need to be applied 
as quickly as possible. The power of fuzzing 
is measured in thousands of executions per 
second. 8000 executions per second is clearly 
better than 6000 ex/s. Due to this need for 
speed, fuzz testing is typically performed during 
unit testing in a host environment.

While finding and eliminating vulnerabilities 
in a host environment is good, if you only test 
in that environment, you have no chance of 
detecting vulnerabilities that occur only in the 
target architecture. 

In other words, there are some vulnerabilities 
that will only occur when your code is running 
on your big-endian target architecture. If you 
fuzz test only on your little-endian desktop 
environment, you’ll have no chance of finding 
them.

No amount of fuzzing will catch all undefined 
behavior

Since fuzzers generate fuzz inputs semi-
randomly with lots of redundancy, they can’t 
possibly generate all the possible values that 
make up your code’s input space. As mentioned, 
for a non-trivial program, there are too many 
possible input combinations. Billions upon 
billions of them.

Also, fuzzers are not intended to detect all 
undefined behavior resulting from their inputs. 
The main purpose of a fuzzer is to generate sets 
of semi-random inputs. Secondary purposes 
of grey-box and white-box fuzzers include 
the measurement of code coverage, and the 
optimization of input sets to maximize code 
coverage while minimizing the number of 
inputs/executions required to achieve that 
coverage. 
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Fuzzers will indicate interesting behavior like 
program crashes caused by specific inputs, but 
they are not designed to detect every undefined 
behavior that might be lurking in your code.

In short, while it can help prove a program is 
incorrect, fuzzing cannot prove a program is 
correct.

Assumes the employment of an all-
knowing bug oracle

At the opening of this white paper, we defined 
a bug oracle as a program, perhaps as part of a 
fuzzer, that determines whether a given execution 
of the PUT violates a specific security policy.38 

Why the bug oracle is important

Since fuzzing generates arbitrary inputs in an 
automated manner, we do not know a priori how 
the target software is supposed to behave for 
those inputs. Is it expected to reject them as 
invalid? Is it expected to accept them as valid and 
produce a particular response to them? Either 
way, the fuzzer doesn’t know.

The fuzzer only knows if a given input allows 
the program to execute or causes an execution 
failure (a crash). If the program executes, the 
fuzzer provides no indication of whether the 
program’s response was correct or not. If the user 
is to recognize whether a given input results in 
behavior worthy of further human investigation, 
another component must be present. That 
component is the oracle.

The oracle tells the user if the target software 
appears to be behaving incorrectly for a given 
input.

Typical oracle implementations

One way to realize an oracle would be to 
write internal self-checks, called assertions, 
in the target software. Any input that causes 
one of these internal checks to fail makes the 
input interesting and worthy of investigation. 
Unfortunately, writing assertions for all possible 
security policies would be extremely time-
consuming.

A second option is to rely on another 
implementation of the exact same functionality as 
a reference. One could then compare the results 
computed by the target software with those 
computed by the reference implementation. This 
practice is known as differential testing.

For differential testing to be effective, however, 
either the reference implementation must be 
of very high quality, or one must be prepared 
to find and fix vulnerabilities in the reference 
implementation as well as in the target software. 
An often-rediscovered fact when using differential 
testing is that vulnerabilities are found in the 
reference implementation as well as in the target 
software. This, too, is very time-consuming; in 
most cases, it doubles the amount of effort, 
as both the target and the reference must be 
developed and debugged.

Alternatively, one could hope that any incorrect 
behavior of the target software in response to 
a particular input will result in a recognizable 
failure like a crash or—in a memory-safe language 
like Ada—an uncaught exception. The latter is 
better than an undefined behavior but still not 
ideal, especially in a memory-unsafe language 
like C/C++ where the possibilities for undefined 
behavior abound.

Limitations of typical oracle 
implementations

In the case of C/C++ and other memory-unsafe 
languages, the frequently-used default oracles 
just described are only partial. They do not check 
for all of the possible types of undefined behavior 
that hackers might exploit; there is a vast array 
of these and some are more subtle than others. 
Furthermore, the results computed for a given 
input may vary depending on the memory layout 
defined at compilation. 

In memory-unsafe languages, a given memory 
layout may cause a defect to result in an 
undefined behavior or not, or cause an undefined 
behavior to result in a crash or not. Consequently, 
one can’t be sure that the result obtained during 
testing will be the same as the result for the same 
input obtained after deployment.

One way to palliate the problem would be to 
make sure the tested binary is exactly that which 
is intended for deployment and that all memory is 
allocated statically. 

However, to detect more undefined behavior, 
what many users of fuzzing also like to do is allow 
a sanitizer to instrument the code generated 
during compilation with automatically-inserted 
additional checks. In this case, the memory layout 
of the binary executed during fuzzing is different 
from the memory layout of the uninstrumented 
binary intended for deployment.
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So, not finding anything interesting during the 
execution of the (instrumented) binary during 
fuzzing does not mean that nothing interesting 
will happen during the execution of the 
(uninstrumented) binary after deployment.

Classic fuzzing is always a partial 
solution

Classic fuzzing will greatly expand your 
exploration of the total input space of your target 
program. You will likely find a lot of vulnerabilities 
that you would not normally find during a normal 
testing campaign. 

Due to the limitations just described, however, 
classic fuzzing will always remain a partial 
solution, for three reasons. First, you cannot 

explore the entire input space due to its size. 
Second, you will only find vulnerabilities that 
occur in the specific memory allocation as 
dictated by the compilation performed by the 
fuzzer. Finally, you will only find vulnerabilities 
your instrumentation and analysis tools are 
designed to detect.

Because the compilation and memory allocation 
of your binary is likely to differ from what you 
explored in your fuzzing environment and may be 
affected by the order in which applications were 
loaded on the target hardware, your code will 
remain vulnerable. Hackers may be using black-
box fuzzing to penetrate it on specific hardware 
platforms.

To overcome these limitations, you need a 
complete oracle rather than a partial one.

The perfect bug oracle

To ensure your code is safe from the exploits of malicious hackers, 
it is essential that you detect and eliminate undefined behavior (e.g. 
buffer overflows, non-initialized variables, invalid pointer usage, 
signed overflows, division by zero, etc.) in every execution path of your 
program.

To be clear, an undefined behavior is not the same 
as either an implementation-defined behavior or 
an unspecified behavior.39

Undefined behavior is a C/C++ language concept, 
defined in Annex J2 of the language: It consists 
in code constructs for which there are no 
requirements how the compiler will implement 
them, i.e. there is zero guarantee that the code 
will behave the same in different contexts (in 
particular the toolchain (and toolchain settings) 
used to generate the executable and the 
environment in which the executable will run). 
They therefore frequently cause random crashes 
or random program behavior. These types of 

problems are often very difficult to detect under 
standard laboratory testing conditions.

Undefined behavior is also very dangerous 
because it is a major angle of attacks on C/C++ 
code. Hackers exploit undefined behavior to 
remotely gain control of the software and achieve 
arbitrary code execution. 

A great first step toward eliminating all undefined 
behavior in your code is to fuzz your code with 
the help of TrustInSoft Analyzer. Running fuzz 
inputs through TrustInSoft Analyzer allows you 
to formally verify the elimination of all undefined 
behavior that TrustInSoft Analyzer finds.
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TrustInSoft Analyzer

TrustInSoft Analyzer is a hybrid code Analyzer 
combining advanced static and dynamic analysis 
techniques together with Formal Methods to 
mathematically guarantee C/C++ code quality, 
reliability, security and safety. It has been 
designed to detect ALL undefined behavior in 
any execution path, and in combination with a 
fuzzer or any test drivers, with no false alarms. 

TrustInSoft Analyzer can guarantee your fuzz 
testing results are valid for any compiler, any 
chosen set of compiler options, and any memory 
layout. In short, TrustInSoft Analyzer is a 
complete and perfect bug oracle for C/C++ code. 
It optimizes the fuzzing process.

Why formal verification is superior to 
classic fuzzing 

While they will generate many more tests than 
normal testing, fuzzers typically do not detect 
vulnerabilities that don’t cause the PUT to crash. 
What’s more, a fuzzer will only explore the 
execution paths of one specific code compilation 
and memory layout.

In contrast, TrustInSoft Analyzer’s mathematical 
analysis of the PUT using formal methods 
guarantees that every undefined behavior on 
every execution path explored by the provided 
fuzz inputs will be detected for every possible 
compilation and every possible memory layout.

Fuzzing with TrustInSoft Analyzer and 
AFL 

Fuzzing with TrustInSoft Analyzer is fast and 
efficient because the tool integrates easily with 
AFL, one of the most popular coverage-based 
grey-box fuzzers. We like fuzzing with AFL for a 

number of reasons. Of these, three stand above 
the rest.

First, AFL is chainable to other tools. As the 
creator’s documentation states, “The fuzzer 
generates superior, compact test corpora 
that can serve as a seed for more specialized, 
slower, or labor-intensive processes and 
testing frameworks. It is also capable of on-
the-fly corpus synchronization with any other 
software.”40 

Second, AFL employs an efficient source code 
instrumentation to record the edge coverage of 
each execution of the program being tested and 
the coarse hit counts for each edge. It uses this 
information not only to generate seed files for 
new fuzz inputs but also in the implementation 
of a unique deduplication scheme that optimizes 
code coverage using a minimum set of inputs.41

Third, AFL uses a heuristic Evolutionary 
Algorithm (EA) to refine its seed pool based on 
branch coverage. This helps improve the odds 
that newly generated fuzz inputs help to increase 
coverage.42

All of these features help shorten the fuzzing 
cycle and save time.

After running AFL to generate a set of test cases 
(input files), you just load those test cases along 
with your code into TrustInSoft Analyzer and run 
an analysis in the Analyzer’s interpreter mode. 
This is a simple operation—as easy as ordering a 
compilation of your code.

For each test case, TrustInSoft Analyzer will 
detect whether or not the execution depends 
upon the memory layout. If for some memory 
layout that input will cause an undefined 
behavior, the tool will detect that as well and 
generate a warning to that effect.
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Benefits of fuzzing with 
TrustInSoft Analyzer
Fuzzing with TrustInSoft Analyzer produces a number of important benefits.

1. Find more vulnerabilities. 
TrustInSoft Analyzer can detect undefined behavior that typically remains unnoticed throughout 
standard unit and integration tests. You will be 100% sure you have no undefined behavior for the 
specific entry points defined by your test (fuzz) inputs.

2. No false alarms. 
When running analysis on discrete inputs, TrustInSoft Analyzer generates no false alarms. All alarms 
raised correspond to real vulnerabilities, thanks to the use of formal methods. You’ll waste no time 
investigating false positives.

3. Better validation of embedded code.
TrustInSoft Analyzer provides target emulation for embedded hardware platforms. Target emulation 
allows you to test your embedded code in an environment that closely resembles your target 
architecture. It helps you find vulnerabilities in embedded code that unit testing in a host environment 
cannot possibly reveal.

Out of the box, TrustInSoft Analyzer supports a number of common target platforms, including 32-
bit ARM, 64-bit ARM, Power PC, RISC-V, and X86. If your hardware is more exotic, the emulator can 
easily be configured by adjusting a series of parameters. Everything that can change from one target 
platform to another is configurable in the Analyzer.
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Case Study
Fuzzing Wireshark in interpreter 
mode

A few years ago, as an experiment, we used 
TrustInSoft Analyzer to search for hidden 
vulnerabilities in Wireshark, a popular network 
protocol analyzer and IP packet sniffer.

Target program

An open-source C application initially released 
in 1998, Wireshark had already been tested 
extensively over the course of two decades 
of use. It’s also a huge application (5 million 
lines of code with plugins) that accepts a wide 
variety of input formats. Even if we had wanted 
to write new tests, the task would have been 
overwhelmingly large and extremely time-
consuming. We wouldn’t have known where to 
start.

Procedure

Instead, we downloaded existing Wireshark 
test scripts from GitHub, many of which were 
likely generated through fuzzing. There were 
44 in total. We then fuzzed Wireshark with AFL 
for good measure, since we weren’t sure how 
current our downloaded scripts were. Finally, we 
ran those test cases through TrustInSoft Analyzer 
in interpreter mode. 

The overall process took in total 4 person days 
of effort, in order to understand the project 
structure and add a fuzzer on top of the existing 
test driver to generate 10k random data sets 
input values. Running the analysis itself took a 
few hours.

Results

In the end, TrustInSoft Analyzer found thirteen 
previously undiscovered vulnerabilities, including 
one undefined behavior deemed an exploitable 
vulnerability. Most of these defects had likely 
been latent within the application for years. 
Figure 2 summarizes our results.

The novelty of our approach was not in finding 
a way to generate better test cases. We used 
methods and inputs that had already been used 
by others. Instead, we leveraged a better way 
of taking advantage of those inputs. TrustInSoft 
Analyzer found subtle vulnerabilities that would 
be missed (and were missed) when simply 
executing the program with those same inputs.

TrustInSoft Analyzer in interpreter mode is the 
most complete oracle for detecting undefined 
behavior caused by inputs generated through 
fuzzing. It does not rely on one particular 
execution of the target code. Instead, it provides 
guarantees that apply for all possible executions 
of the target code, for any optimization level 
used during compilation, and for any memory 
configuration.

The only thing fuzzing in interpreter mode can’t 
guarantee is the detection of undefined behavior 
along execution paths your fuzz inputs failed to 
explore. As explained earlier, the input space, 
in most cases, is simply too large for this to be 
practical. This is a limitation of fuzzing. It is, 
however, a limitation that can be overcome by 
going beyond fuzzing… with TrustInSoft Analyzer.

Figure 2: Results of 

Wireshark analysis 

using TrustInSoft 

Analyzer in interpreter 

mode.TrustInSoft 

Analyzer found subtle 

vulnerabilities that 

would be missed (and 

were missed) when 

simply executing the 

program with those 

same inputs.

https://www.wireshark.org
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Beyond fuzzing: How to 
guarantee air-tight security 

For applications where security is key and you 
want to be absolutely sure your code is free from 
vulnerabilities that can be exploited by hackers, 
you’ll need to go beyond fuzzing.

While the first step we presented earlier (i.e. 
fuzzing with TrustInSoft Analyzer) is a great 
way to detect and eliminate more vulnerabilities 
than conventional testing or classic fuzzing can 
reveal, it cannot guarantee perfect coverage of 
all possible input vectors.

In interpreter mode, the Analyzer makes iterative 
test runs on the discrete input sets it has been 
given. But, as we’ve already seen, input space 
for most software applications—consisting of 
billions upon billions of possible combinations—is 
too immense to be covered completely through 
iterative testing. If you try, you’ll never finish.

So, while a coverage-guided grey-box fuzzer 
like AFL can explore your program’s input space 
efficiently, it can’t explore it completely. Fuzzing 
alone cannot guarantee you’ve found every 
undefined behavior that may be lurking in your 
code.

For applications where assurance of a high level 
of cybersecurity is required, TrustInSoft Analyzer 
offers a more advanced solution. As we’ll see 
shortly, this solution is a complement to fuzz 
testing that can guarantee perfect cybersecurity. 
We call this solution exhaustive static analysis.

Exhaustive static analysis

Exhaustive static analysis goes beyond fuzzing. 

Instead of performing individual executions on 
individual inputs in an iterative fashion, it relies 
on a formal method called abstract interpretation 
to fully explore a program’s input and execution 
space.

Abstract interpretation allows TrustInSoft 
Analyzer to perform abstract executions for 
the entire range of values defined by your input 
variables. It turns your existing tests with discrete 
inputs into a generalized test covering your 
code’s entire input space.

For example, let’s say you were testing a function 
of an integer I using values of I = –10 and I = 
+10. Thanks to the power of formal methods, you 
would be able to test this function over the full 
interval of values for the integer I, from -231 to 
231-1, in a single test.

This input generalization works for all variable 
types in C/C++: integer, float, pointer, function 
pointer, etc. You can easily generate a 
generalized test from one of your existing tests 
with discrete inputs or from your API interface. 

Thanks to the power of mathematics, exhaustive 
static analysis allows you to run the equivalent of 
billions upon billions of test cases simultaneously 
in a just a few seconds, in a single test run. It 
is guaranteed to detect all undefined behavior 
in your code, regardless of compilation 
optimization level or memory layout. Plus, once 
all the undefined behavior it detects have been 
eliminated, it provides formal proof that your 
code is totally free of exploitable vulnerabilities 
due to undefined behavior.
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Why fuzz with TrustInSoft 
Analyzer?
At this point, you may be asking yourself, “So, 
if you can eliminate every last vulnerability with 
exhaustive static analysis, why use fuzzing at all 
in the first step?”

The first thing to mention before we address this 
question is that there are some types of code 
that cannot be analyzed with discrete test inputs 
at all. Hence analyzing this type of software with 
exhaustive analysis and input generalization is 
the best approach. When a device starts up, 
the value of the registers can be any value, and 
the tester of a bootloader must take this into 
account. There is no point in testing this state of 
the device with discrete values as the test will 
not be representative enough. An exhaustive 
analysis is required to test the vulnerability of a 
bootloader.

Having said that, when it comes to the type of 
software where both fuzzing in interpreter mode 
or exhaustive analysis techniques are suitable, 
sometimes it can still be more efficient over 
the entire test campaign to start initially with 
Fuzzing in interpreter mode and then move on to  
the second stage, exhaustive static analysis.

Even though exhaustive static analysis generates 
far fewer false positives than other classic 
static analysis tools, it can generate some false 
positives due to the approximations made. In 
exhaustive static analysis, there are only two 
ways to determine which warnings are true 
vulnerabilities and which are false positives. One 
way is to manually investigate each warning, one 
by one. This method can be time-consuming. 
This is the same method that is being used with 
classic static analysis tools. 

The second way, which we prefer, is to re-tune 
and repeat your analysis and then compare 
results.

By tuning, we mean adjusting the approximations 
of the acceptable and forbidden zones with 
slightly different parameters—to change their 
“shape,” if you will in order to eliminate false 
positives. 

This is a far more efficient way to eliminate false 
positives.

Unfortunately, the more vulnerabilities you have 
in your target program, the more laborious 
this re-tune-and-compare process becomes. 
It becomes much more efficient after you’ve 
eliminated the more obvious vulnerabilities in 
your code.

Now, you’ll remember that TrustInSoft Analyzer’s 
interpreter mode will automatically run any 
set of inputs automatically and generate no 
false positives. That’s why we called fuzzing 
with interpreter mode a great first step. By first 
fuzzing your program with AFL and running 
the resulting fuzz inputs through TrustInSoft 
Analyzer in interpreter mode, you can quickly 
detect and eliminate many true vulnerabilities 
before running the Analyzer in exhaustive static 
analysis mode. 

Interpreter mode thins your vulnerability herd 
considerably. This greatly simplifies the task of 
re-tuning your analysis. It makes the elimination 
of the hard-to-find undefined behavior that 
exhaustive static analysis reveals much easier 
and quicker. Ultimately, it saves you a lot of time 
over the course of your debugging campaign.

You’ll achieve formal proof that your code is 
100% vulnerability-free much, much sooner.
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The advantages of proceeding to 
exhaustive static analysis
In today’s world, software providers need 
assurance of a high level of cybersecurity 
in their source code. To do this, there are 
several significant advantages to proceeding 
to exhaustive static analysis after fuzzing in 
interpreter mode.

First, it’s exhaustive. You’ll have peace of mind 
knowing you have found and removed every 
undefined behavior—every single vulnerability 
from your code.

Second, once you’ve removed all undefined 

behavior, TrustInSoft Analyzer provides a 
mathematical guarantee that you’ve removed 
every vulnerability from your code. This is formal 
proof you can use as evidence in reviews with 
security specialists, customers, and regulators.

Finally, having accomplished exhaustive static 
analysis once for a given program, you’ll find it 
is much less work than fuzzing when you modify 
your code. You’re now working from a much 
cleaner baseline. You simply re-run the analyses 
you’ve already set up.

To illustrate the power of exhaustive static 
analysis, we’ll look at two more examples.

Case Studies
Seeing is believing: going beyond fuzzing or coupling fuzzing and analysis with TrustInSoft 
Analyzer allows for more powerful and robust results. Find out how TrustInSoft Analyzer 
helped secure the Goodix GT915 capactivie touchscreen driver and the Mbed TLS library in 
the following case studies:

Case study 1: Goodix GT915 
capacitive touchscreen driver

The Goodix GT915 capacitive touchscreen driver 
is a hardware driver for a multi-touch screen 
sensor, used for mobile phones but also other 
touchscreens in cars, tablets etc.…. It is an open-
source driver that can sense and process multiple 
simultaneous touches on a touchscreen. Since 
the code is open source, hackers have access to 
it, and it makes it easier for them to find attack 
vectors. 

The difficulty in designing and testing such a 
firmware device is that the hardware has no 
limitations. It can detect and provide input from 
up to 256 simultaneous touches.

How can one be sure the driver handles many 
simultaneous inputs flawlessly? Usually, people 
would use 1 or 2 fingers on a touch screen, and 
a resolute tester may try 5 or 10 fingers. Though 
what happens if there is a material defect, or if 
a hacker is able to simulate 256 simultaneous 
touches? Is the driver robust enough to cope?

It is extremely difficult to adequately test such a 

driver with hardware in the loop. There are just 
too many possible input combinations, and it 
is extremely difficult to exert a large number of 
touches simultaneously.

Conversely, in a hosted environment, you can’t 
be certain of your test results due to the memory 
layout issues discussed earlier.

Thanks to the power of mathematics, with 
TrustInSoft Analyzer it was possible to determine, 
simulate and cascade the superset of all possible 
inputs, code values and behaviors.

Results

TrustInSoft Analyzer detected an undefined 
behavior that occurs when the hardware sends 
256 simultaneous touches. This high number of 
inputs was too large for the software to handle 
and caused a buffer overflow.

TrustInSoft Analyzer was also able to confirm and 
guarantee the absence of undefined behavior 
due to a large array of common weakness 
enumeration (CWE)43 : CWEs 119 to 127, 369, 415 
416, 457 476, 562, 690 and 787. 
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Case study 2: Mbed TLS library

Mbed TLS (previously PolarSSL), a collaborative 
project managed by TrustedFirmware (formerly 
by Arm), is a library that implements the TLS 
protocol for encrypted secure communication 
over the internet.44The purpose of TLS is to 
provide strong guarantees of security. It lets you 
be certain that you know to whom you are talking 
and that other parties cannot eavesdrop on your 
conversation (by intercepting your packets as 
they are being transmitted).

Initially released in 2009, Mbed TLS is a widely 
used library that had already been tested 
extensively. Because it is such an important case 
from a cybersecurity perspective, we decided to 
analyze it.

The objective was to demonstrate absence of 
undefined behavior on several modules of the TLS 
library, namely: SSL Server and its submodules 
MD5 and SHA1 hashing, AES and 

RSA cryptography and MPI (Multi Precision 
Integer). The entire library is about 100K LoC, so 
each module was analyzed separately to simplify 
and speed up the work. 

Results

During the analysis, TrustInSoft Analyzer detected 
a total of 9 issues, most notably instances of 
signed integer overflow and invalid pointer 
arithmetic—vulnerabilities that could result in the 
loss of the security properties one would expect 
from such a protocol. The code coverage resulting 
from the analysis was above 98%. The residual 
uncovered code was verified to be dead code.

After patches, TrustInSoft Analyzer was able to 
formally guarantee the absence of vulnerabilities 
covering 17 different CWEs. For this achievement, 
TrustInSoft was cited in a National Institute of 
Standards and Technology (NIST) report to the 
White House for having demonstrated that it can 
formally guarantee that no undefined behavior is 
present in a system.45

Conclusion
In today’s hyper-connected, software-dependent 
world, exhaustive detection and elimination of 
undefined behavior is a must. Typically, these 
vulnerabilities are very difficult to detect under 
standard testing conditions and are the primary 
targets for exploitation by software hackers.

Hackers use fuzzing to find these weaknesses 
they can breach in software products. The 
developers of those products should be doing 
the same, so they can eliminate those weaknesses 
before hackers can exploit them.

Fuzzing is a great first step in eliminating security 
vulnerabilities in your code, but it won’t find them 
all. Fuzzing is not exhaustive. It tests one input 
at a time. There is simply not enough time to test 
every possible input combination. The best you 
can hope for is that your pool of fuzz inputs is 
fairly representative of your program’s possible 
execution paths.

What’s more, hackers can still outsmart you with 
their own use of fuzzers. They only need to find 
one exploitable flaw in your application to breach 
it. You need to find every single one.

Fortunately, fuzzing results can be greatly 
improved by running fuzz inputs through 
TrustInSoft Analyzer. The Analyzer’s interpreter 

mode, thanks to its use of a variety of 
mathematical formal methods, is designed to 
find more vulnerabilities than fuzzers or other 
static analyzers—indeed, to find every type of 
undefined behavior—while not generating any 
false positives. Fuzzing with TrustInSoft Analyzer 
gives you far greater confidence in the depth of 
your testing.

For applications where security is key and 
assurance of a high level of cybersecurity is 
required, it is necessary to go beyond fuzzing 
with TrustInSoft Analyzer. 

Exhaustive static analysis—TrustInSoft Analyzer’s 
generalization of inputs through the use of 
abstract interpretation—goes beyond fuzzing. 
Using advanced formal methods, exhaustive 
static analysis tests your program for all possible 
input combinations—not just a (hopefully) 
representative selection of them—across all 
possible compilations and memory layouts. It 
does so by solving your code as though it were a 
mathematical equation. It enables to exhaustively 
detect all undefined behavior and vulnerabilities 
which hackers may otherwise exploit. Once 
they are corrected, it provides a mathematical 
guarantee of their absence. 
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Since the beginning, TrustInSoft Analyzer has been adopted by industry-leading companies around the world to 

ensure sound cybersecurity in their low-level code.

Founded in 2013, TrustInSoft developed a game-changing product for software code analysis. TrustInSoft 

Analyzer is a hybrid code analyzer that combines advanced static and dynamic analysis techniques together 

with Formal Methods to mathematically guarantee C/C++ code quality, reliability, security and safety. TrustInSoft 

has customers worldwide in the automotive, IoT, telecom, semiconductor, aeronautics and defense industries. 

TrustInSoft has received awards and recognition from the NIST, RSA and Linux Foundation.

To learn more about TrustInSoft Analyzer, visit trust-in-soft.com/product/trustinsoft-analyzer.

If you’d like to speak with a TrustInSoft technical representative about how TrustInSoft Analyzer can meet your 

organization’s specific needs, contact us by email at contact@trust-in-soft.com.

contact@trust-in-soft.com

Phone : +33 1 84 06 43 91 or +1 (408) 829-5882

TrustInSoft Analyzer also provides the following business benefits:

1. Reduces overall software testing efforts and costs 

2. Provides mathematical guarantees on software quality, robustness, cybersecurity and safety

• Reduces risks linked to Time to market and meeting software deliverable milestones 

• Legal liability

• Brand reputation

3. Enables differentiation through higher level of software quality, robustness, cybersecurity 

and safety.

http://trust-in-soft.com/product/trustinsoft-analyzer
mailto:contact%40trust-in-soft.com?subject=
mailto:contact%40trust-in-soft.com?subject=
https://www.linkedin.com/company/trustinsoft/
https://www.youtube.com/channel/UCsqaS4-U1DpIq_v6sH5WKzw
https://twitter.com/TrustInSoft
https://www.facebook.com/TrustInSoft/
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