
Fuzzing and Beyond

A guide to fuzzing for cybersecurity
and how to go beyond fuzzing to
guarantee perfect protection against
cyberattack

May 2023

Table of contents

Fuzzing and Beyond ... 3

What is Fuzzing .. 4

Commonly Used Fuzzing Tools ... 7

Fuzzing Infrastructures and Frameworks 9

Limitations of Fuzzing ...10

The Perfect Bug Oracle ... 12

TrustInSoft Analyzer .. 13

Benefits of Fuzzing with TrustInSoft Analyzer14

Case Study: Wireshark ... 15

Beyond Fuzzing: guaranteeing air-tight security16

Why fuzz with TrustInSoft Analyzer 17

Case Studies .. 18

Conclusion ...19

References ..20

WHITE PAPER 2023 3

FUZZING AND BEYOND

Fuzzing and Beyond

The rapid growth in the connectivity of software-
driven products to Wi-Fi and cellular networks
and the internet—in industries that include
consumer electronics, smart home and office,
IoT, industrial automation, automotive, aerospace
and defense—has been forecast to continue for
the foreseeable future.1,2

That growth has engendered a corresponding
growth in attack surfaces and, subsequently,
an increasing interest in exploiting those attack
surfaces on the part of unscrupulous hackers
and unfriendly governments. In short, the cyber
threat is here to stay.

Countering that threat has become critically
important to businesses and has resulted in a
growing interest in the use of fuzzing on the part
of both software development organizations and
security specialists.

Fuzzing is a software testing technique that
applies vast numbers of input combinations to
a target program very rapidly, in an automated
manner. By generating these inputs semi-
randomly, fuzzing can test combinations the
developer may not have anticipated while saving
the developer the tedium of manually defining
individual test cases. The goal is to reveal hard-
to-find vulnerabilities that are rarely caught by
conventional software testing.

Hackers frequently use fuzzing tools to find
loopholes in code—untested input values that
create unexpected behavior they can exploit
remotely. They wait patiently while their fuzzer
applies millions of random inputs until, finally, it
uncovers a flaw that suits their purposes.

To unleash havoc, a hacker need only find a
single vulnerability the developer failed to
correct before release. That puts software

vendors at a distinct disadvantage.

While testing for corner cases is a best practice,
development teams need to go further. Under
time-to-market pressure, they need new
methodologies for efficient verification. Unlike
hackers, they can’t be satisfied with stumbling
upon one exploitable vulnerability. They need to
find and fix all the vulnerabilities they can while
maintaining their release schedule.

A large proportion of issues in C/C++ code that
are exploited by hackers is so-called undefined
behavior. Undefined behavior is a technical
term that includes all sorts of runtime errors
such as buffer overflows, division by zero, null
pointers, etc. Fuzzing is a great first step for
uncovering undefined behavior that normal
testing is not designed to catch. However, even
the best fuzzers are not designed to catch every
vulnerability, either because the fuzzer did not
select the input that causes the problem or
because the problem happened but there was
no visible manifestation of it (so the fuzzer is
unaware of the problem); they need to be paired
with analysis tools that are.

What’s more, for critical applications, it’s often
necessary to go beyond fuzzing to ensure
airtight cybersecurity.

In this white paper, we’ll examine fuzzing: what
it is, who uses it, how they use it, its benefits,
its limitations, and how those limitations can be
mitigated. We’ll also look at circumstances in
which development teams need to go beyond
fuzzing, along with some tools and methods
that can guarantee the complete elimination of
all exploitable vulnerabilities in your software or
firmware.

We’ll begin with the most basic question…

What is fuzzing?

WHITE PAPER 2023 4

FUZZING AND BEYOND

What is fuzzing?
To answer this question, it’s best to start with a few definitions (located in the orange box to the left).
We will use those from a recent survey of the published work on fuzzing titled, “The Art, Science, and
Engineering of Fuzzing: A Survey” (Manès et al).3 Its authors’ intent was to consolidate and distill as
much of the available research as possible and to resolve discrepancies between the various sources.

Motivations and principles of fuzzing

Programmers often make many assumptions concerning
the structure and contents of the data their programs
handle internally.

For example, an application may store in memory an
array of a certain size and use a variable to indicate
this size. If at some point the actual size of the array
does not match what is stored in the size variable, then
the assumption is broken, and the internal state of the
application is invalid. This may, of course, cause severe
problems. In our example, an out-of-bounds write—which
could result in a crash or an arbitrary code execution if
exploited by an attacker—is quite possible.

Furthermore, even if the program’s internal data
manipulation logic is flawless, its internal state still may
become corrupted when it reads data from the outside.
All external information entering the application, whether
it be a command line parameter or a collection of bytes
received through a network socket, must be properly
verified and either accepted as valid or rejected as
invalid.

If the program is completely correct, safe, and secure,
then it should recognize and gracefully reject any invalid
inputs. However, due to programming oversights or
other anomalies, invalid inputs are not always caught at
the frontier. Some may be accepted inside the program,
invalidating its internal state. This is especially prone to
happen when external data validation is not a trivial task.

Applications that handle complex structured inputs—
communications using specific protocols or employing
specific file formats for information storage, for
example—are especially vulnerable.

This is where fuzz testing can be deployed with great
effect. Fuzzers attempt to generate invalid, unexpected,
or completely random data to feed a given program in
the hope of discovering any holes in its input verification.
Basically, their aim is to detect the situations when the
program accepts an invalid input as valid.

Although there are different approaches to generating
such inputs, many fuzzers skim along the valid/invalid
input border. They attempt to generate inputs that are
almost valid but contain some subtle invalidity or expose
an obscure corner case.

Fuzzing

The term “fuzz” was coined by Miller et

al in 19904 to refer to the actions of an

automated testing program that “generates

a stream of random characters to be

consumed by a target program.”5

Manès et al define fuzzing as,

The execution of a PUT (Program Under

Test) using inputs sampled from an

input space (the “fuzz input space”) that

protrudes the expected input space of the

PUT 6

By “protrudes” the authors mean they

consider fuzz inputs to be inputs that the

PUT may not be expecting. They point

out that “the sampling process is not

necessarily randomized,” as it had been

originally envisioned, and “in practice,

fuzzing almost surely runs for many

iterations.”7

In general practice, fuzzing is a software

testing technique that rapidly applies

large numbers of valid, nearly valid, or

invalid inputs to a program, one after the

other, in a search for undesired behaviors

(vulnerabilities).

By “nearly valid” inputs, we mean inputs

that meet the expected form of the

input space but contain values that are

malformed or unexpected. The idea is to

automatically generate inputs for the tested

program, trying to find such parameters

and input data that cause the program to

misbehave in some way. This may result in

a safety or security flaw, such as a crash,

memory leak, or arbitrary code execution.

Ultimately, the goal of fuzzing is

to automate the process of finding

vulnerabilities by generating a large number

of test inputs that exercise a program or

system in ways that are unexpected or that

stress its functionality.

WHITE PAPER 2023 5

FUZZING AND BEYOND

What is fuzzing? Continued
Testing corner cases

A corner case is a test case that tests the program or
system at the extreme limits of its intended inputs and
conditions. This can include inputs that are outside the
normal range of values, inputs that are specifically designed
to stress the program or system, inputs that violate
assumptions or constraints of the program or system, and
inputs that would not be encountered in normal use.

Corner cases are important to test because they can reveal
security vulnerabilities that may not be detected through
normal testing methods. By testing these cases, software
developers can ensure that their programs or systems
behave correctly and securely even under unusual or
unexpected conditions.

Typical uses of fuzzing

In a nutshell, fuzzing is used to expose flaws in a software
program. Historically, it has been found extremely efficient
in detecting safety and security issues, both in applications
and operating systems.

While fuzzing can be used as a part of any general-purpose
software testing program, it is most useful (and most used)
in a cybersecurity context. It helps improve robustness
against malicious penetration via unanticipated inputs.

In short, fuzzing can be used to detect all kinds of
vulnerabilities, but it is most often used to uncover security
vulnerabilities.

Fuzz testing

Whereas fuzzing has been defined as

merely exercising a PUT with fuzz inputs,

fuzz testing has the goal of verifying the

fitness of the PUT against a specification.

In general, fuzz testing can be defined as a

form of software testing that uses fuzzing.

Manès, et al, consider fuzz testing to have

the specific goal of finding security-related

vulnerabilities, as this is its predominant

application. Hence, their definition of fuzz

testing is: The use of fuzzing to test if a PUT

violates a security policy.8

Fuzzer

A fuzzer, also called a fuzzing engine, is:

A program that performs fuzz testing on a

PUT9

Fuzz campaign

According to Manès et al, a fuzz campaign

is: A specific execution of a fuzzer on a PUT

with a specific security policy10

Though, as they point out, “fuzz testing can

actually be used to test any security policy

observable from an execution,” not just one

specific security policy.11

Bug oracle

The term oracle may call to mind figures

from Greek mythology like the priestess to

Apollo at Delphi or the Sibyls, the oracles

through which the gods were believed to

speak. In fuzzing, the bug oracle (or simply,

the oracle) is the device that determines

what the PUT’s response should be to a

given fuzz input.

To reflect common fuzzing practice, Manès,

et al, define a bug oracle as: A program,

perhaps as part of a fuzzer, that determines

whether a given execution of the PUT

violates a specific security policy.12

WHITE PAPER 2023 6

FUZZING AND BEYOND

What is fuzzing? Continued

Typical users

Who uses fuzzing? In general, potential users include
anyone interested in detecting security vulnerabilities.

More specifically, typical users fall into three general
categories.

Hackers (black hats) use fuzzers and fuzzing with
malicious intentions. Their aim is to detect security
vulnerabilities they can exploit, so they can take control
of the software for financial or espionage motives.

The second group, software security researchers (white
hats) frequently employ the same methods as black hats.
They typically use fuzzing to discover security flaws
in new software. They then report their findings to the
software vendor, so the latter can correct the defect
found before black hats can cause them any damage.

The third group includes software developers,
penetration testers, and other software testers. This
group generally uses somewhat different tools and
methods than black hats and white hats, because they
have access to the source code. They need to do a far
more thorough job than hackers, who only need to find
one vulnerability they can exploit.

Next, we’ll look at the differences between the various
fuzzing tools and methods these groups use.

This definition implies that a single oracle

need not and often does not cover ALL

security policies. We’ll see later that this

partial coverage of security policies (like

CWEs) is a disadvantage. And while it is

common for a bug oracle to be partial, that

is not necessarily the case for all oracles.

Fuzz algorithm

Very simply, a fuzz algorithm is:

The algorithm implemented by a fuzzer13

These vary significantly from fuzzer to

fuzzer, depending on the area within the

fuzzing space a specific fuzzer addresses.

Fuzz configuration

A fuzz configuration of a fuzz algorithm

comprises the parameter value(s) that

control(s) the fuzz algorithm.14

The types of values in a fuzz configuration

depend upon the type of the fuzz

algorithm. Fuzzers typically maintain a

collection of “seeds,” and some fuzzers

evolve the collection as the fuzz campaign

progresses.15

A seed is a (commonly well-structured)

input to the PUT used to generate test

cases by modifying it. The collection of

seeds maintained by a fuzzer is called a

seed pool.16

Fuzzers are normally able to store some

data within each configuration. A coverage-

guided fuzzer, for example, may store the

attained coverage in each configuration.17

WHITE PAPER 2023 7

FUZZING AND BEYOND

Commonly Used Fuzzing Tools
Tools commonly used for fuzzing include fuzzing
engines, fuzzing infrastructures and frameworks,
and libraries.

Fuzzing engines

Fuzzing engines, commonly referred to as
fuzzers, are not all created equal. They can be
characterized along a number of lines, as the
space is highly multi-dimensional. It is important
to choose a fuzzer that is well-suited to your
application. We will look at a number of ways in
which the fuzzer space is segmented.

Need for source code

Fuzzing engines can be either compiler-based or
binary-only.

Compiler-based fuzzers require access to the
source code. They include a special compiler
for the target programming language that adds
lightweight instrumentation to the PUT when
compiling it. That instrumentation typically
collects coverage data during the fuzz campaign
or provides data to the oracle function.

State-of-the-art fuzzers also use compilers
to apply fuzzing-enhancing transformations
that improve the execution speed of the PUT,
enable easier penetration, and track interesting
behaviors.18

Binary-only fuzzers are designed for situations
where source code is unavailable. In practice,
many fuzzing use cases are binary only,
especially for security researchers working
on closed-source, proprietary, or commercial
software. Such fuzzers are restricted to binary
instrumentation.19

Until very recently, available options for binary-
only fuzzing have been unable to match the
speed and transformation of their compiler
counterparts, thus limiting their effectiveness.20,21

Awareness of program structure

Black-box fuzzers are unaware of the internal
structure of the PUT. They observe only the
target program’s input/output behavior, treating
it as a “black box” they can’t see inside. Most
early fuzzers were of this type. Some modern
black-box fuzzers like Funfuzz22 and Peach23 take
the structure of the PUT’s inputs into account

to generate more meaningful test cases without
inspecting the source code.24

Black-box fuzzers are commonly used by hackers
due to their ease of use and versatility. They are
also used by white-hat security professionals
who do not have access to the source code or
who are assessing the likelihood of exploitation
by hackers under such conditions.

White-box fuzzers generate test cases by
analyzing the code structure of the PUT and the
information they gather during execution. With
this information, they are able to explore the
target program’s execution paths systematically.

The term “white-box fuzzing” was introduced
by Patrice Godefroid to refer to fuzz testing that
employs dynamic symbolic execution (DSE),
a variant of symbolic execution.25The term is
also used to describe fuzzers that employ taint
analysis.26White-box fuzzing typically incurs
much higher overhead than black-box fuzzing,
partly because DSE implementations tend to
employ SMT (Satisfiability Modulo Theories)
solving and dynamic instrumentation. They
require more work to set up and their processing
is much slower.27

Grey-box fuzzers occupy a middle ground
between the two extremes. Unlike black-box
fuzzers, they can gather some information
from inside the PUT to assess its structure and/
or its executions. Unlike the white-box variety,
grey-box fuzzers do not reason about the full
semantics of the PUT. Instead, they tend to
limit their investigation to performing some
lightweight static analysis and/or gathering some
dynamic execution data, like code coverage.
Grey-box fuzzers aim to strike an effective
balance between execution speed, ease of use,
and ensuring broad test coverage.28

Coverage-guided grey-box fuzzing is probably
the most successful fuzzing approach. This
method adds a feedback loop to keep and
mutate only the few test cases reaching new
code coverage. The rationale behind it is that
exhaustively exploring the target code will likely
reveal more vulnerabilities. Coverage is collected
via instrumentation inserted into the target
program at compilation.29Widely successful
coverage-guided grey-box fuzzers include AFL,30
AFL++,31 libFuzzer,32 and honggFuzz33.

WHITE PAPER 2023 8

How inputs are generated

Mutation-based fuzzers take the seeds (valid
inputs) in their seed pool and generate collections
of fuzz inputs by altering (mutating) them, mostly
by bit manipulation, into forms that may be valid
or invalid.

Generation-based fuzzers take the valid input
structure provided to them, analyze it, and
generate entirely new inputs that match the valid
input structure.

Awareness of input structure

Dumb (unstructured) fuzzers produce completely
random inputs that do not necessarily match
the prescribed format of the expected input.
Most early fuzzers were of this type. Due to their
simplicity, dumb fuzzers can produce results with
little work, but their coverage will be extremely
limited. Such primitive fuzzers are unlikely
to produce sufficient results to help ensure
cybersecurity.

Through awareness of input structure, smart
(structured) fuzzers can generate randomized
inputs that are valid enough to pass program
parser checks and penetrate deep into the
program logic. These require more work to set up
compared to dumb fuzzers since the user must
define for the fuzzer the target program’s input
format, but they are far more likely to trigger
edge cases and find vulnerabilities thanks to
greater code coverage.

Types of inputs generated

Many fuzzers are optimized for fuzzing specific
types of input formats, including:

Figure 1: Genealogy tracing significant fuzzers’ lineage back to Miller et al.’s seminal work. Each node in the same row represents a set of fuzzers appeared in the same

year. A solid arrow from X to Y indicates that Y cites, references, or otherwise uses techniques from X. denotes that a paper describing the work was published.

Source: Manès, V., et al, The Art, Science, and Engineering of Fuzzing: A Survey, IEEE, October 2019.

•File

•Network

•Kernel I/O

•UI

•Web

•Thread (concurrency)

These specializations
crosscut the other
categories listed earlier.

Manès et al produced
a fuzzer genealogy
(Figure 1) that illustrates
how the fuzzer space
is subdivided along the
lines just described.

WHITE PAPER 2023 9

FUZZING AND BEYOND

Fuzzing infrastructures and
frameworks
A large-scale user of fuzzing to test its own software, Google has developed a number of scalable
fuzzing tools. Among these, the most notable are ClusterFuzz and OSS-Fuzz.

ClusterFuzz is a distributed fuzzer execution environment and reporting tool. Essentially, it is a
scalable fuzzing infrastructure. ClusterFuzz forms the fuzzing backend for OSS-Fuzz.34

OSS-Fuzz is a framework that combines fuzzers and provides scalable execution for the fuzzing
of open-source software (OSS).35It combines modern fuzzing techniques with scalable, distributed
execution. Along with ClusterFuzz, OSS-Fuzz supports the libFuzzer, AFL++, and Honggfuzz fuzzing
engines in combination with a number of Sanitizers.36

Benefits of fuzzing with state-of-the-art fuzzing tools

Fuzz testing with state-of-the-art fuzzing tools offers software development organizations a number
of significant benefits.

First, most fuzzing tools are relatively easy to use. This is especially true of black-box and grey-box
fuzzers, which cover the vast majority of use cases.

Second, fuzzing rapidly expands your testing campaigns. It allows you to quickly and easily extend the
scope of your unit tests, and it can be used in both unit testing and integration testing.

Next, fuzzing rapidly expands the code coverage of your testing. White-box and grey-box fuzzers
typically include compilers that add code instrumentation that collects coverage data. In addition, the
fuzzing algorithms of sophisticated fuzzers like AFL contain logic for directing coverage while limiting
redundant cases and economizing campaigns. These facilities can quickly increase code coverage at
the beginning of your test campaign by 60% to 80% compared to normal unit testing.

Finally, fuzzing can be easily scaled, parallelized, and combined with other techniques like static
analysis and dynamic analysis.

While fuzzing offers several advantages, it is not without its limitations. It would be a mistake to view
fuzzing as an exhaustive approach to ensuring code quality or security. It’s important to know what
those limitations are to specify the role fuzzing should play in the verification of a given application.
We will examine several of those limitations next.

Fuzzing libraries

To make “brute force testing less brutish,” the FuzzDB Project has developed “the first and most
comprehensive open dictionary of fault injection patterns, predictable resource locations, and regex for
matching server responses.”37

FuzzDB contains lists of attack payload primitives (fuzz inputs) for fault injection testing that increase
the likelihood of finding application security vulnerabilities. These are categorized by attack and,
where appropriate, platform type.

WHITE PAPER 2023 10

FUZZING AND BEYOND

Limitations of Fuzzing
Finding meaningful inputs can take significant
time

Fuzzing generally requires a preliminary phase
of running the fuzzer to “find” meaningful inputs.
This can take significant time. In addition, you
need to re-run fuzzers regularly as your code
changes.

Of course, one’s definition of “meaningful” will
depend upon one’s use case and objective.
Many fuzzers do not solve the difficult problem
of generating meaningful inputs, but simply
generate a lot of them hoping that some will
be interesting. The idea is that—since modern
computers are so fast that it takes only a very
small fraction of a second to run the code on
the inputs—you might as well generate plenty
of inputs and see which ones cause something
interesting to happen.

As mentioned earlier, more sophisticated grey-
box fuzzers will refine and improve their input
seeds to explore promising areas and try to
find more vulnerabilities. Nonetheless, fuzzing
is clearly an iterative process. Any instance of
the PUT can only be tested for one fuzz input at
a time, and complex input profiles can present
billions upon billions of possible test cases.

For example, a 256-bit input file offers 2256

(>1.15x 1077) possible permutations. Even with
fast computers and parallel processing, fuzzing
an entire input space of that size would be
prohibitive in terms of both time and cost.

Fuzzing engines generate fuzz inputs in a semi-
random fashion. That means even the best
fuzzing algorithms will produce a significant
number of redundant inputs and accordingly run
redundant tests.

What you can do—thanks to the instrumentation
inserted by the fuzzer’s compiler—is measure
code coverage and the relevance of individual
inputs based on the coverage they produce.

Coverage-based grey-box fuzzers can adjust
their seed pools to reduce redundant tests. In
general, however, it is very difficult to generate
inputs that reach all the parts of the source code.
Coverage tends to remain well below 100%.

Fuzz testing may be insufficient for testing
embedded code

Embedded software is typically designed to run
on specific embedded hardware, like an ARM
RISC processor, for instance.

Good fuzz testing requires that you run as
many fuzz inputs as possible. To make that
cost-effective, those inputs need to be applied
as quickly as possible. The power of fuzzing
is measured in thousands of executions per
second. 8000 executions per second is clearly
better than 6000 ex/s. Due to this need for
speed, fuzz testing is typically performed during
unit testing in a host environment.

While finding and eliminating vulnerabilities
in a host environment is good, if you only test
in that environment, you have no chance of
detecting vulnerabilities that occur only in the
target architecture.

In other words, there are some vulnerabilities
that will only occur when your code is running
on your big-endian target architecture. If you
fuzz test only on your little-endian desktop
environment, you’ll have no chance of finding
them.

No amount of fuzzing will catch all undefined
behavior

Since fuzzers generate fuzz inputs semi-
randomly with lots of redundancy, they can’t
possibly generate all the possible values that
make up your code’s input space. As mentioned,
for a non-trivial program, there are too many
possible input combinations. Billions upon
billions of them.

Also, fuzzers are not intended to detect all
undefined behavior resulting from their inputs.
The main purpose of a fuzzer is to generate sets
of semi-random inputs. Secondary purposes
of grey-box and white-box fuzzers include
the measurement of code coverage, and the
optimization of input sets to maximize code
coverage while minimizing the number of
inputs/executions required to achieve that
coverage.

WHITE PAPER 2023 11

Fuzzers will indicate interesting behavior like
program crashes caused by specific inputs, but
they are not designed to detect every undefined
behavior that might be lurking in your code.

In short, while it can help prove a program is
incorrect, fuzzing cannot prove a program is
correct.

Assumes the employment of an all-
knowing bug oracle

At the opening of this white paper, we defined
a bug oracle as a program, perhaps as part of a
fuzzer, that determines whether a given execution
of the PUT violates a specific security policy.38

Why the bug oracle is important

Since fuzzing generates arbitrary inputs in an
automated manner, we do not know a priori how
the target software is supposed to behave for
those inputs. Is it expected to reject them as
invalid? Is it expected to accept them as valid and
produce a particular response to them? Either
way, the fuzzer doesn’t know.

The fuzzer only knows if a given input allows
the program to execute or causes an execution
failure (a crash). If the program executes, the
fuzzer provides no indication of whether the
program’s response was correct or not. If the user
is to recognize whether a given input results in
behavior worthy of further human investigation,
another component must be present. That
component is the oracle.

The oracle tells the user if the target software
appears to be behaving incorrectly for a given
input.

Typical oracle implementations

One way to realize an oracle would be to
write internal self-checks, called assertions,
in the target software. Any input that causes
one of these internal checks to fail makes the
input interesting and worthy of investigation.
Unfortunately, writing assertions for all possible
security policies would be extremely time-
consuming.

A second option is to rely on another
implementation of the exact same functionality as
a reference. One could then compare the results
computed by the target software with those
computed by the reference implementation. This
practice is known as differential testing.

For differential testing to be effective, however,
either the reference implementation must be
of very high quality, or one must be prepared
to find and fix vulnerabilities in the reference
implementation as well as in the target software.
An often-rediscovered fact when using differential
testing is that vulnerabilities are found in the
reference implementation as well as in the target
software. This, too, is very time-consuming; in
most cases, it doubles the amount of effort,
as both the target and the reference must be
developed and debugged.

Alternatively, one could hope that any incorrect
behavior of the target software in response to
a particular input will result in a recognizable
failure like a crash or—in a memory-safe language
like Ada—an uncaught exception. The latter is
better than an undefined behavior but still not
ideal, especially in a memory-unsafe language
like C/C++ where the possibilities for undefined
behavior abound.

Limitations of typical oracle
implementations

In the case of C/C++ and other memory-unsafe
languages, the frequently-used default oracles
just described are only partial. They do not check
for all of the possible types of undefined behavior
that hackers might exploit; there is a vast array
of these and some are more subtle than others.
Furthermore, the results computed for a given
input may vary depending on the memory layout
defined at compilation.

In memory-unsafe languages, a given memory
layout may cause a defect to result in an
undefined behavior or not, or cause an undefined
behavior to result in a crash or not. Consequently,
one can’t be sure that the result obtained during
testing will be the same as the result for the same
input obtained after deployment.

One way to palliate the problem would be to
make sure the tested binary is exactly that which
is intended for deployment and that all memory is
allocated statically.

However, to detect more undefined behavior,
what many users of fuzzing also like to do is allow
a sanitizer to instrument the code generated
during compilation with automatically-inserted
additional checks. In this case, the memory layout
of the binary executed during fuzzing is different
from the memory layout of the uninstrumented
binary intended for deployment.

WHITE PAPER 2023 12

So, not finding anything interesting during the
execution of the (instrumented) binary during
fuzzing does not mean that nothing interesting
will happen during the execution of the
(uninstrumented) binary after deployment.

Classic fuzzing is always a partial
solution

Classic fuzzing will greatly expand your
exploration of the total input space of your target
program. You will likely find a lot of vulnerabilities
that you would not normally find during a normal
testing campaign.

Due to the limitations just described, however,
classic fuzzing will always remain a partial
solution, for three reasons. First, you cannot

explore the entire input space due to its size.
Second, you will only find vulnerabilities that
occur in the specific memory allocation as
dictated by the compilation performed by the
fuzzer. Finally, you will only find vulnerabilities
your instrumentation and analysis tools are
designed to detect.

Because the compilation and memory allocation
of your binary is likely to differ from what you
explored in your fuzzing environment and may be
affected by the order in which applications were
loaded on the target hardware, your code will
remain vulnerable. Hackers may be using black-
box fuzzing to penetrate it on specific hardware
platforms.

To overcome these limitations, you need a
complete oracle rather than a partial one.

The perfect bug oracle

To ensure your code is safe from the exploits of malicious hackers,
it is essential that you detect and eliminate undefined behavior (e.g.
buffer overflows, non-initialized variables, invalid pointer usage,
signed overflows, division by zero, etc.) in every execution path of your
program.

To be clear, an undefined behavior is not the same
as either an implementation-defined behavior or
an unspecified behavior.39

Undefined behavior is a C/C++ language concept,
defined in Annex J2 of the language: It consists
in code constructs for which there are no
requirements how the compiler will implement
them, i.e. there is zero guarantee that the code
will behave the same in different contexts (in
particular the toolchain (and toolchain settings)
used to generate the executable and the
environment in which the executable will run).
They therefore frequently cause random crashes
or random program behavior. These types of

problems are often very difficult to detect under
standard laboratory testing conditions.

Undefined behavior is also very dangerous
because it is a major angle of attacks on C/C++
code. Hackers exploit undefined behavior to
remotely gain control of the software and achieve
arbitrary code execution.

A great first step toward eliminating all undefined
behavior in your code is to fuzz your code with
the help of TrustInSoft Analyzer. Running fuzz
inputs through TrustInSoft Analyzer allows you
to formally verify the elimination of all undefined
behavior that TrustInSoft Analyzer finds.

WHITE PAPER 2023 13

FUZZING AND BEYOND

TrustInSoft Analyzer

TrustInSoft Analyzer is a hybrid code Analyzer
combining advanced static and dynamic analysis
techniques together with Formal Methods to
mathematically guarantee C/C++ code quality,
reliability, security and safety. It has been
designed to detect ALL undefined behavior in
any execution path, and in combination with a
fuzzer or any test drivers, with no false alarms.

TrustInSoft Analyzer can guarantee your fuzz
testing results are valid for any compiler, any
chosen set of compiler options, and any memory
layout. In short, TrustInSoft Analyzer is a
complete and perfect bug oracle for C/C++ code.
It optimizes the fuzzing process.

Why formal verification is superior to
classic fuzzing

While they will generate many more tests than
normal testing, fuzzers typically do not detect
vulnerabilities that don’t cause the PUT to crash.
What’s more, a fuzzer will only explore the
execution paths of one specific code compilation
and memory layout.

In contrast, TrustInSoft Analyzer’s mathematical
analysis of the PUT using formal methods
guarantees that every undefined behavior on
every execution path explored by the provided
fuzz inputs will be detected for every possible
compilation and every possible memory layout.

Fuzzing with TrustInSoft Analyzer and
AFL

Fuzzing with TrustInSoft Analyzer is fast and
efficient because the tool integrates easily with
AFL, one of the most popular coverage-based
grey-box fuzzers. We like fuzzing with AFL for a

number of reasons. Of these, three stand above
the rest.

First, AFL is chainable to other tools. As the
creator’s documentation states, “The fuzzer
generates superior, compact test corpora
that can serve as a seed for more specialized,
slower, or labor-intensive processes and
testing frameworks. It is also capable of on-
the-fly corpus synchronization with any other
software.”40

Second, AFL employs an efficient source code
instrumentation to record the edge coverage of
each execution of the program being tested and
the coarse hit counts for each edge. It uses this
information not only to generate seed files for
new fuzz inputs but also in the implementation
of a unique deduplication scheme that optimizes
code coverage using a minimum set of inputs.41

Third, AFL uses a heuristic Evolutionary
Algorithm (EA) to refine its seed pool based on
branch coverage. This helps improve the odds
that newly generated fuzz inputs help to increase
coverage.42

All of these features help shorten the fuzzing
cycle and save time.

After running AFL to generate a set of test cases
(input files), you just load those test cases along
with your code into TrustInSoft Analyzer and run
an analysis in the Analyzer’s interpreter mode.
This is a simple operation—as easy as ordering a
compilation of your code.

For each test case, TrustInSoft Analyzer will
detect whether or not the execution depends
upon the memory layout. If for some memory
layout that input will cause an undefined
behavior, the tool will detect that as well and
generate a warning to that effect.

WHITE PAPER 2023 14

FUZZING AND BEYOND

Benefits of fuzzing with
TrustInSoft Analyzer
Fuzzing with TrustInSoft Analyzer produces a number of important benefits.

1. Find more vulnerabilities.
TrustInSoft Analyzer can detect undefined behavior that typically remains unnoticed throughout
standard unit and integration tests. You will be 100% sure you have no undefined behavior for the
specific entry points defined by your test (fuzz) inputs.

2. No false alarms.
When running analysis on discrete inputs, TrustInSoft Analyzer generates no false alarms. All alarms
raised correspond to real vulnerabilities, thanks to the use of formal methods. You’ll waste no time
investigating false positives.

3. Better validation of embedded code.
TrustInSoft Analyzer provides target emulation for embedded hardware platforms. Target emulation
allows you to test your embedded code in an environment that closely resembles your target
architecture. It helps you find vulnerabilities in embedded code that unit testing in a host environment
cannot possibly reveal.

Out of the box, TrustInSoft Analyzer supports a number of common target platforms, including 32-
bit ARM, 64-bit ARM, Power PC, RISC-V, and X86. If your hardware is more exotic, the emulator can
easily be configured by adjusting a series of parameters. Everything that can change from one target
platform to another is configurable in the Analyzer.

WHITE PAPER 2023 15

FUZZING AND BEYOND

Case Study
Fuzzing Wireshark in interpreter
mode

A few years ago, as an experiment, we used
TrustInSoft Analyzer to search for hidden
vulnerabilities in Wireshark, a popular network
protocol analyzer and IP packet sniffer.

Target program

An open-source C application initially released
in 1998, Wireshark had already been tested
extensively over the course of two decades
of use. It’s also a huge application (5 million
lines of code with plugins) that accepts a wide
variety of input formats. Even if we had wanted
to write new tests, the task would have been
overwhelmingly large and extremely time-
consuming. We wouldn’t have known where to
start.

Procedure

Instead, we downloaded existing Wireshark
test scripts from GitHub, many of which were
likely generated through fuzzing. There were
44 in total. We then fuzzed Wireshark with AFL
for good measure, since we weren’t sure how
current our downloaded scripts were. Finally, we
ran those test cases through TrustInSoft Analyzer
in interpreter mode.

The overall process took in total 4 person days
of effort, in order to understand the project
structure and add a fuzzer on top of the existing
test driver to generate 10k random data sets
input values. Running the analysis itself took a
few hours.

Results

In the end, TrustInSoft Analyzer found thirteen
previously undiscovered vulnerabilities, including
one undefined behavior deemed an exploitable
vulnerability. Most of these defects had likely
been latent within the application for years.
Figure 2 summarizes our results.

The novelty of our approach was not in finding
a way to generate better test cases. We used
methods and inputs that had already been used
by others. Instead, we leveraged a better way
of taking advantage of those inputs. TrustInSoft
Analyzer found subtle vulnerabilities that would
be missed (and were missed) when simply
executing the program with those same inputs.

TrustInSoft Analyzer in interpreter mode is the
most complete oracle for detecting undefined
behavior caused by inputs generated through
fuzzing. It does not rely on one particular
execution of the target code. Instead, it provides
guarantees that apply for all possible executions
of the target code, for any optimization level
used during compilation, and for any memory
configuration.

The only thing fuzzing in interpreter mode can’t
guarantee is the detection of undefined behavior
along execution paths your fuzz inputs failed to
explore. As explained earlier, the input space,
in most cases, is simply too large for this to be
practical. This is a limitation of fuzzing. It is,
however, a limitation that can be overcome by
going beyond fuzzing… with TrustInSoft Analyzer.

Figure 2: Results of

Wireshark analysis

using TrustInSoft

Analyzer in interpreter

mode.TrustInSoft

Analyzer found subtle

vulnerabilities that

would be missed (and

were missed) when

simply executing the

program with those

same inputs.

https://www.wireshark.org

WHITE PAPER 2023 16

FUZZING AND BEYOND

Beyond fuzzing: How to
guarantee air-tight security

For applications where security is key and you
want to be absolutely sure your code is free from
vulnerabilities that can be exploited by hackers,
you’ll need to go beyond fuzzing.

While the first step we presented earlier (i.e.
fuzzing with TrustInSoft Analyzer) is a great
way to detect and eliminate more vulnerabilities
than conventional testing or classic fuzzing can
reveal, it cannot guarantee perfect coverage of
all possible input vectors.

In interpreter mode, the Analyzer makes iterative
test runs on the discrete input sets it has been
given. But, as we’ve already seen, input space
for most software applications—consisting of
billions upon billions of possible combinations—is
too immense to be covered completely through
iterative testing. If you try, you’ll never finish.

So, while a coverage-guided grey-box fuzzer
like AFL can explore your program’s input space
efficiently, it can’t explore it completely. Fuzzing
alone cannot guarantee you’ve found every
undefined behavior that may be lurking in your
code.

For applications where assurance of a high level
of cybersecurity is required, TrustInSoft Analyzer
offers a more advanced solution. As we’ll see
shortly, this solution is a complement to fuzz
testing that can guarantee perfect cybersecurity.
We call this solution exhaustive static analysis.

Exhaustive static analysis

Exhaustive static analysis goes beyond fuzzing.

Instead of performing individual executions on
individual inputs in an iterative fashion, it relies
on a formal method called abstract interpretation
to fully explore a program’s input and execution
space.

Abstract interpretation allows TrustInSoft
Analyzer to perform abstract executions for
the entire range of values defined by your input
variables. It turns your existing tests with discrete
inputs into a generalized test covering your
code’s entire input space.

For example, let’s say you were testing a function
of an integer I using values of I = –10 and I =
+10. Thanks to the power of formal methods, you
would be able to test this function over the full
interval of values for the integer I, from -231 to
231-1, in a single test.

This input generalization works for all variable
types in C/C++: integer, float, pointer, function
pointer, etc. You can easily generate a
generalized test from one of your existing tests
with discrete inputs or from your API interface.

Thanks to the power of mathematics, exhaustive
static analysis allows you to run the equivalent of
billions upon billions of test cases simultaneously
in a just a few seconds, in a single test run. It
is guaranteed to detect all undefined behavior
in your code, regardless of compilation
optimization level or memory layout. Plus, once
all the undefined behavior it detects have been
eliminated, it provides formal proof that your
code is totally free of exploitable vulnerabilities
due to undefined behavior.

WHITE PAPER 2023 17

FUZZING AND BEYOND

Why fuzz with TrustInSoft
Analyzer?
At this point, you may be asking yourself, “So,
if you can eliminate every last vulnerability with
exhaustive static analysis, why use fuzzing at all
in the first step?”

The first thing to mention before we address this
question is that there are some types of code
that cannot be analyzed with discrete test inputs
at all. Hence analyzing this type of software with
exhaustive analysis and input generalization is
the best approach. When a device starts up,
the value of the registers can be any value, and
the tester of a bootloader must take this into
account. There is no point in testing this state of
the device with discrete values as the test will
not be representative enough. An exhaustive
analysis is required to test the vulnerability of a
bootloader.

Having said that, when it comes to the type of
software where both fuzzing in interpreter mode
or exhaustive analysis techniques are suitable,
sometimes it can still be more efficient over
the entire test campaign to start initially with
Fuzzing in interpreter mode and then move on to
the second stage, exhaustive static analysis.

Even though exhaustive static analysis generates
far fewer false positives than other classic
static analysis tools, it can generate some false
positives due to the approximations made. In
exhaustive static analysis, there are only two
ways to determine which warnings are true
vulnerabilities and which are false positives. One
way is to manually investigate each warning, one
by one. This method can be time-consuming.
This is the same method that is being used with
classic static analysis tools.

The second way, which we prefer, is to re-tune
and repeat your analysis and then compare
results.

By tuning, we mean adjusting the approximations
of the acceptable and forbidden zones with
slightly different parameters—to change their
“shape,” if you will in order to eliminate false
positives.

This is a far more efficient way to eliminate false
positives.

Unfortunately, the more vulnerabilities you have
in your target program, the more laborious
this re-tune-and-compare process becomes.
It becomes much more efficient after you’ve
eliminated the more obvious vulnerabilities in
your code.

Now, you’ll remember that TrustInSoft Analyzer’s
interpreter mode will automatically run any
set of inputs automatically and generate no
false positives. That’s why we called fuzzing
with interpreter mode a great first step. By first
fuzzing your program with AFL and running
the resulting fuzz inputs through TrustInSoft
Analyzer in interpreter mode, you can quickly
detect and eliminate many true vulnerabilities
before running the Analyzer in exhaustive static
analysis mode.

Interpreter mode thins your vulnerability herd
considerably. This greatly simplifies the task of
re-tuning your analysis. It makes the elimination
of the hard-to-find undefined behavior that
exhaustive static analysis reveals much easier
and quicker. Ultimately, it saves you a lot of time
over the course of your debugging campaign.

You’ll achieve formal proof that your code is
100% vulnerability-free much, much sooner.

WHITE PAPER 2023 18

The advantages of proceeding to
exhaustive static analysis
In today’s world, software providers need
assurance of a high level of cybersecurity
in their source code. To do this, there are
several significant advantages to proceeding
to exhaustive static analysis after fuzzing in
interpreter mode.

First, it’s exhaustive. You’ll have peace of mind
knowing you have found and removed every
undefined behavior—every single vulnerability
from your code.

Second, once you’ve removed all undefined

behavior, TrustInSoft Analyzer provides a
mathematical guarantee that you’ve removed
every vulnerability from your code. This is formal
proof you can use as evidence in reviews with
security specialists, customers, and regulators.

Finally, having accomplished exhaustive static
analysis once for a given program, you’ll find it
is much less work than fuzzing when you modify
your code. You’re now working from a much
cleaner baseline. You simply re-run the analyses
you’ve already set up.

To illustrate the power of exhaustive static
analysis, we’ll look at two more examples.

Case Studies
Seeing is believing: going beyond fuzzing or coupling fuzzing and analysis with TrustInSoft
Analyzer allows for more powerful and robust results. Find out how TrustInSoft Analyzer
helped secure the Goodix GT915 capactivie touchscreen driver and the Mbed TLS library in
the following case studies:

Case study 1: Goodix GT915
capacitive touchscreen driver

The Goodix GT915 capacitive touchscreen driver
is a hardware driver for a multi-touch screen
sensor, used for mobile phones but also other
touchscreens in cars, tablets etc.…. It is an open-
source driver that can sense and process multiple
simultaneous touches on a touchscreen. Since
the code is open source, hackers have access to
it, and it makes it easier for them to find attack
vectors.

The difficulty in designing and testing such a
firmware device is that the hardware has no
limitations. It can detect and provide input from
up to 256 simultaneous touches.

How can one be sure the driver handles many
simultaneous inputs flawlessly? Usually, people
would use 1 or 2 fingers on a touch screen, and
a resolute tester may try 5 or 10 fingers. Though
what happens if there is a material defect, or if
a hacker is able to simulate 256 simultaneous
touches? Is the driver robust enough to cope?

It is extremely difficult to adequately test such a

driver with hardware in the loop. There are just
too many possible input combinations, and it
is extremely difficult to exert a large number of
touches simultaneously.

Conversely, in a hosted environment, you can’t
be certain of your test results due to the memory
layout issues discussed earlier.

Thanks to the power of mathematics, with
TrustInSoft Analyzer it was possible to determine,
simulate and cascade the superset of all possible
inputs, code values and behaviors.

Results

TrustInSoft Analyzer detected an undefined
behavior that occurs when the hardware sends
256 simultaneous touches. This high number of
inputs was too large for the software to handle
and caused a buffer overflow.

TrustInSoft Analyzer was also able to confirm and
guarantee the absence of undefined behavior
due to a large array of common weakness
enumeration (CWE)43 : CWEs 119 to 127, 369, 415
416, 457 476, 562, 690 and 787.

WHITE PAPER 2023 19

Case study 2: Mbed TLS library

Mbed TLS (previously PolarSSL), a collaborative
project managed by TrustedFirmware (formerly
by Arm), is a library that implements the TLS
protocol for encrypted secure communication
over the internet.44The purpose of TLS is to
provide strong guarantees of security. It lets you
be certain that you know to whom you are talking
and that other parties cannot eavesdrop on your
conversation (by intercepting your packets as
they are being transmitted).

Initially released in 2009, Mbed TLS is a widely
used library that had already been tested
extensively. Because it is such an important case
from a cybersecurity perspective, we decided to
analyze it.

The objective was to demonstrate absence of
undefined behavior on several modules of the TLS
library, namely: SSL Server and its submodules
MD5 and SHA1 hashing, AES and

RSA cryptography and MPI (Multi Precision
Integer). The entire library is about 100K LoC, so
each module was analyzed separately to simplify
and speed up the work.

Results

During the analysis, TrustInSoft Analyzer detected
a total of 9 issues, most notably instances of
signed integer overflow and invalid pointer
arithmetic—vulnerabilities that could result in the
loss of the security properties one would expect
from such a protocol. The code coverage resulting
from the analysis was above 98%. The residual
uncovered code was verified to be dead code.

After patches, TrustInSoft Analyzer was able to
formally guarantee the absence of vulnerabilities
covering 17 different CWEs. For this achievement,
TrustInSoft was cited in a National Institute of
Standards and Technology (NIST) report to the
White House for having demonstrated that it can
formally guarantee that no undefined behavior is
present in a system.45

Conclusion
In today’s hyper-connected, software-dependent
world, exhaustive detection and elimination of
undefined behavior is a must. Typically, these
vulnerabilities are very difficult to detect under
standard testing conditions and are the primary
targets for exploitation by software hackers.

Hackers use fuzzing to find these weaknesses
they can breach in software products. The
developers of those products should be doing
the same, so they can eliminate those weaknesses
before hackers can exploit them.

Fuzzing is a great first step in eliminating security
vulnerabilities in your code, but it won’t find them
all. Fuzzing is not exhaustive. It tests one input
at a time. There is simply not enough time to test
every possible input combination. The best you
can hope for is that your pool of fuzz inputs is
fairly representative of your program’s possible
execution paths.

What’s more, hackers can still outsmart you with
their own use of fuzzers. They only need to find
one exploitable flaw in your application to breach
it. You need to find every single one.

Fortunately, fuzzing results can be greatly
improved by running fuzz inputs through
TrustInSoft Analyzer. The Analyzer’s interpreter

mode, thanks to its use of a variety of
mathematical formal methods, is designed to
find more vulnerabilities than fuzzers or other
static analyzers—indeed, to find every type of
undefined behavior—while not generating any
false positives. Fuzzing with TrustInSoft Analyzer
gives you far greater confidence in the depth of
your testing.

For applications where security is key and
assurance of a high level of cybersecurity is
required, it is necessary to go beyond fuzzing
with TrustInSoft Analyzer.

Exhaustive static analysis—TrustInSoft Analyzer’s
generalization of inputs through the use of
abstract interpretation—goes beyond fuzzing.
Using advanced formal methods, exhaustive
static analysis tests your program for all possible
input combinations—not just a (hopefully)
representative selection of them—across all
possible compilations and memory layouts. It
does so by solving your code as though it were a
mathematical equation. It enables to exhaustively
detect all undefined behavior and vulnerabilities
which hackers may otherwise exploit. Once
they are corrected, it provides a mathematical
guarantee of their absence.

WHITE PAPER 2023 20

1. Hyper Connectivity Market Forecast
2022-2030, Precedence Research,

September 2022.

2. Internet of Things Connectivity
Market, Emergen Research, June

2022.

3. Manès, V., et al, The Art, Science, and
Engineering of Fuzzing: A Survey,

IEEE, October 2019.

4. Miller, B. P., Fredriksen, L., and So, B.,

An empirical study of the reliability
of UNIX utilities, Communications of

the ACM, vol. 33, no. 12, pp. 32–44,

1990.

5. Manès, V., et al, The Art, Science, and
Engineering of Fuzzing: A Survey,

IEEE, October 2019.

6. Ibid.

7. Ibid.

8. Ibid.

9. Ibid.

10. Ibid.

11. Schneider, F. B., Enforceable security
policies, ACM Transactions on

Information System Security, vol. 3,

no. 1, pp. 30–50, 2000.

12. Manès, V., et al, The Art, Science, and
Engineering of Fuzzing: A Survey,

IEEE, October 2019.

13. Ibid.

14. Ibid.

15. Ibid.

16. Ibid.

17. Ibid.

18. Nagy, S., et al, Breaking Through
Binaries: Compiler-quality
Instrumentation for Better Binary-
only Fuzzing, 30th Usenix Security

Symposium, August 2021.

19. Ibid.

20. Ibid.

21. Pauley, E., et al, Performant Binary
Fuzzing without Source Code using
Static Instrumentation, IEEE, October

2022.

22. Mozilla Security, Funfuzz, https://
github.com/MozillaSecurity/funfuzz.

23. GitLab, Peach Fuzzer, https://
peachtech.gitlab.io/peach-fuzzer-
community/.

24. Manès, V., et al, The Art, Science, and
Engineering of Fuzzing: A Survey,
IEEE, October 2019.

25. Godefroid, P., Random testing for
security: Blackbox vs. whitebox
fuzzing, Proceedings of the
International Workshop on Random
Testing, 2007.

26. Ganesh, V., Leek, T., Rinard, M., Taint-
based directed whitebox fuzzing,

IEEE, May 2009.

FUZZING AND BEYOND

References

https://www.precedenceresearch.com/hyper-connectivity-market
https://www.precedenceresearch.com/hyper-connectivity-market
https://www.emergenresearch.com/industry-report/iot-connectivity-market
https://www.emergenresearch.com/industry-report/iot-connectivity-market
https://arxiv.org/pdf/1812.00140.pdf
https://arxiv.org/pdf/1812.00140.pdf
https://dl.acm.org/doi/10.1145/96267.96279
https://dl.acm.org/doi/10.1145/96267.96279
https://arxiv.org/pdf/1812.00140.pdf
https://arxiv.org/pdf/1812.00140.pdf
https://dl.acm.org/doi/10.1145/353323.353382
https://dl.acm.org/doi/10.1145/353323.353382
https://arxiv.org/pdf/1812.00140.pdf
https://arxiv.org/pdf/1812.00140.pdf
https://www.usenix.org/system/files/sec21fall-nagy.pdf
https://www.usenix.org/system/files/sec21fall-nagy.pdf
https://www.usenix.org/system/files/sec21fall-nagy.pdf
https://www.usenix.org/system/files/sec21fall-nagy.pdf
https://ieeexplore.ieee.org/document/9947273
https://ieeexplore.ieee.org/document/9947273
https://ieeexplore.ieee.org/document/9947273
https://github.com/MozillaSecurity/funfuzz
https://github.com/MozillaSecurity/funfuzz
https://peachtech.gitlab.io/peach-fuzzer-community/
https://peachtech.gitlab.io/peach-fuzzer-community/
https://peachtech.gitlab.io/peach-fuzzer-community/
https://arxiv.org/pdf/1812.00140.pdf
https://arxiv.org/pdf/1812.00140.pdf
https://dl.acm.org/doi/10.1145/1292414.1292416
https://dl.acm.org/doi/10.1145/1292414.1292416
https://dl.acm.org/doi/10.1145/1292414.1292416
https://dl.acm.org/doi/10.1145/1292414.1292416
https://dl.acm.org/doi/10.1145/1292414.1292416
https://ieeexplore.ieee.org/document/5070546
https://ieeexplore.ieee.org/document/5070546
https://ieeexplore.ieee.org/document/5070546

WHITE PAPER 2023 21

27. Manès, V., et al, The Art, Science, and
Engineering of Fuzzing: A Survey,

IEEE, October 2019.

28. Ibid.

29. Nagy, S., et al, Breaking Through
Binaries: Compiler-quality
Instrumentation for Better Binary-
only Fuzzing, 30th Usenix Security

Symposium, August 2021.

30. Zalewski, M., American fuzzy lop.

31. Advanced Fuzzing League ++,

AFLPlusPlus.

32. Serebryany, K., Continuous Fuzzing
with libFuzzer and AddressSanitizer,
IEEE, November 2016.

33. Swiecki, R., honggfuzz.

34. Google, ClusterFuzz.

35. Google, OSS-Fuzz.

36. Google, Sanitizers.

37. FuzzDB Project, FuzzDB.

38. Manès, V., et al, The Art, Science, and
Engineering of Fuzzing: A Survey,

IEEE, October 2019.

39. Gruevski, P., Falsehoods
programmers believe about
undefined behavior, predr.ag/blog,

November 2022.

40. Zalewski, M., American fuzzy lop.

41. Manès, V., et al, The Art, Science, and
Engineering of Fuzzing: A Survey,

IEEE, October 2019.

42. Ibid.

43. Common Weakness Enumeration,

CWE List Version 4.10, MITRE,

October 2021.

44. TrustedFirmware, Mbed-TLS.

45. Black, P.; Badger, L.; Guttman, B.;

Fong, E.; Dramatically Reducing
Software Vulnerabilities: Report to
the White House Office of Science
and Technology Policy; National
Institute of Science and Technology
(NIST), November 2016.

FUZZING AND BEYOND

References

https://arxiv.org/pdf/1812.00140.pdf
https://arxiv.org/pdf/1812.00140.pdf
https://www.usenix.org/system/files/sec21fall-nagy.pdf
https://www.usenix.org/system/files/sec21fall-nagy.pdf
https://www.usenix.org/system/files/sec21fall-nagy.pdf
https://www.usenix.org/system/files/sec21fall-nagy.pdf
https://lcamtuf.coredump.cx/afl/
https://github.com/AFLplusplus/AFLplusplus
https://ieeexplore.ieee.org/document/7839812
https://ieeexplore.ieee.org/document/7839812
https://honggfuzz.dev
https://github.com/google/clusterfuzz
https://github.com/google/oss-fuzz
https://github.com/google/sanitizers
https://github.com/fuzzdb-project/fuzzdb
https://arxiv.org/pdf/1812.00140.pdf
https://arxiv.org/pdf/1812.00140.pdf
https://predr.ag/blog/falsehoods-programmers-believe-about-undefined-behavior/
https://predr.ag/blog/falsehoods-programmers-believe-about-undefined-behavior/
https://predr.ag/blog/falsehoods-programmers-believe-about-undefined-behavior/
https://lcamtuf.coredump.cx/afl/
https://arxiv.org/pdf/1812.00140.pdf
https://arxiv.org/pdf/1812.00140.pdf
https://cwe.mitre.org/data/
https://github.com/Mbed-TLS/mbedtls
https://trust-in-soft.com/wp-content/uploads/2021/09/NIST.IR_.8151.pdf
https://trust-in-soft.com/wp-content/uploads/2021/09/NIST.IR_.8151.pdf
https://trust-in-soft.com/wp-content/uploads/2021/09/NIST.IR_.8151.pdf
https://trust-in-soft.com/wp-content/uploads/2021/09/NIST.IR_.8151.pdf
https://trust-in-soft.com/wp-content/uploads/2021/09/NIST.IR_.8151.pdf
https://trust-in-soft.com/wp-content/uploads/2021/09/NIST.IR_.8151.pdf

Since the beginning, TrustInSoft Analyzer has been adopted by industry-leading companies around the world to

ensure sound cybersecurity in their low-level code.

Founded in 2013, TrustInSoft developed a game-changing product for software code analysis. TrustInSoft

Analyzer is a hybrid code analyzer that combines advanced static and dynamic analysis techniques together

with Formal Methods to mathematically guarantee C/C++ code quality, reliability, security and safety. TrustInSoft

has customers worldwide in the automotive, IoT, telecom, semiconductor, aeronautics and defense industries.

TrustInSoft has received awards and recognition from the NIST, RSA and Linux Foundation.

To learn more about TrustInSoft Analyzer, visit trust-in-soft.com/product/trustinsoft-analyzer.

If you’d like to speak with a TrustInSoft technical representative about how TrustInSoft Analyzer can meet your

organization’s specific needs, contact us by email at contact@trust-in-soft.com.

contact@trust-in-soft.com

Phone : +33 1 84 06 43 91 or +1 (408) 829-5882

TrustInSoft Analyzer also provides the following business benefits:

1. Reduces overall software testing efforts and costs

2. Provides mathematical guarantees on software quality, robustness, cybersecurity and safety

• Reduces risks linked to Time to market and meeting software deliverable milestones

• Legal liability

• Brand reputation

3. Enables differentiation through higher level of software quality, robustness, cybersecurity

and safety.

http://trust-in-soft.com/product/trustinsoft-analyzer
mailto:contact%40trust-in-soft.com?subject=
mailto:contact%40trust-in-soft.com?subject=
https://www.linkedin.com/company/trustinsoft/
https://www.youtube.com/channel/UCsqaS4-U1DpIq_v6sH5WKzw
https://twitter.com/TrustInSoft
https://www.facebook.com/TrustInSoft/

	Case Study
	Heading One
	Heading Two
	References

