
WHITE PAPER

December 2022

From Bare Metal to Kernel Code:

How Exhaustive Static Analysis
Can Guarantee Airtight Security
and Reliability in Low-level
Software and Firmware

Table of contents

Introduction.. 3

What is “low-level” code? .. 4

An inviting target for hackers.. 5

Embedded systems (and businesses) at high risk.......... 6

Traditional analysis and testing are not the answer	������ 7

Drawbacks of traditional software testing....................... 8

Exhaustive static analysis’ zero-defect guarantee.......... 9

Ideally suited for low-level code.......................................10

Ideal for verifying OS kernels...11

What to look for in a static analysis solution.................. 12

Conclusions.. 13

References..14

WHITE PAPER 2022 3

LOW LEVEL CODE

Introduction

The proliferation of Internet-connected devices
has exploded over the past decade. Today, we
find them everywhere.

Our smartphones, tablets, and PCs… TVs, stereos,
gaming consoles, and other home entertainment
systems… our printers and many other office
devices all connect to the Internet through Wi-Fi
or cellular networks. So do many of our home
appliances as well as the growing number of
smart-home and smart-building technologies.
We find similar devices in practically every room
of every establishment we visit. We even find
them along the street.

Embedded processors and wireless transmitters
and receivers are installed in everything from
public Wi-Fi hotspots to self-service fuel
pumps. They’re in safety-critical and security-
critical IoT devices embedded in automobiles,
medical devices, and point-of-sale terminals.
They’re in systems for factory automation,
energy distribution, lighting, safety, security, and
surveillance. They’re flying above us in all types
of aircraft, from passenger liners to drones to
satellites.

According to IoT business intelligence provider
IoT Analytics, worldwide IoT connections were
up 8% in 2021 and were expected to grow by 18%
in 2022. The firm has forecast that this expansion
should continue for the foreseeable future, as
illustrated in Figure 11.Such growth will continue
to create new opportunities and benefits for
technology providers and consumers.

Unfortunately, this ever-expanding web of

interconnected devices is also creating a serious
security challenge for the technology industry.

The low-level code in these devices—the code
that interfaces directly with the hardware, like
operating system kernels, device firmware,
and drivers and controllers—is, along with the
hardware itself, the foundation of cybersecurity.

These low-level layers in the firmware/software
stack have access to both the hardware below
and the application layers above. If they aren’t
secure, then neither is anything that sits on top of
them.

Coding flaws in low-level code create
vulnerabilities that hackers exploit. Once hackers
gain access, they can either take control of the
device or access the data stored within. For
owners of these devices that could mean the
theft of their sensitive data—possibly their bank
or credit card information.

Bugs in the low-level software such as buffer
overflows, or non-initialized variables also have a
significant reliability impact. They can cause the
software to crash or introduce non-deterministic
behavior, which can impact the supplier’s
image. In the case of safety-critical systems like
automobiles, and medical devices, the result
could be the injury or death of passengers or
patients, product recalls, lawsuits, and other
losses. Whatever the target markets, even in
markets that are not seen as reliability critical, it’s
not always possible nor convenient to remotely
update software in the field.

Figure 1: Source: State of IoT 2022: Number of connected IoT devices

WHITE PAPER 2022 4

Verifying that low-level code is free from coding
errors and vulnerabilities is a serious challenge.
Standard software verification methods like
traditional static analysis and software testing
are not up to the task of fully securing today’s
connected devices; they cannot provide a
guarantee that all vulnerabilities have been
eliminated.

Fortunately, there is an available alternative that
can provide such a guarantee.

Exhaustive static analysis enables developers to
find and eliminate 100% of undefined behaviors
(defects like buffer overflow, uninitialized
memory access, etc.) that can leave low-level
code vulnerable to attack or result in software
crashing or non-deterministic behavior. It gives
device manufacturers and their customers

an iron-clad guarantee that their products
are completely free of such defects and
vulnerabilities.

In the remainder of this white paper, we will
examine in greater detail:

•The challenges of ensuring the security,
and reliability of low-level code in today’s
environment,

•Why traditional code verification methods are
not up to these challenges, and

•How exhaustive static analysis is able to
meet those same challenges and guarantee
cybersecurity and reliability in low-level code.

We’ll start by answering a simple question.

What is “low-level” code?

Low-level code can be found in every connected device. It’s not the code in user applications
like Microsoft Office, Adobe Acrobat, or the apps you download from Apple’s App Store
and Google Play for use on your phone. Instead, it’s the code used in the layers below those
applications—the layers that interact directly with the device hardware.

In PCs, tablets, smartphones, and other devices
that run an operating system (OS) like Windows,
iOS, Android, or Linux, low-level code is used in
the OS kernel and in firmware applications like
secure boot, firmware update, device recovery
attestation, and the system BIOS.

Low-level code is also used in so-called “bare
metal” applications—programs that run directly
on the hardware without the assistance of an
OS. Bare metal software is common in small-
scale, low-power, and memory-limited devices
like medical implants, remote IoT devices, and
spacecraft instrumentation. It’s used frequently
in safety-critical applications in the aerospace,
defense, and automotive industries, as well as in
time-critical applications like RTOS kernels.

WHITE PAPER 2022 5

LOW LEVEL CODE

An inviting target for hackers

Because low-level code offers access to both the
hardware below and the high-level code above,
any flaws in it make inviting targets for hackers.
Exploits against those flaws could cause the
hardware to crash or allow the attacker to gain
control of the high-level code.

A global security survey conducted by Microsoft
found that 80% of enterprises have experienced
at least one firmware attack in the past two
years2.Meanwhile, the National Institute of
Standards and Technology’s (NIST) continually
updated National Vulnerability Database (NVD)
has shown a better than five-fold increase in
firmware attacks since 20173.

“These attacks are of particular importance,”
says firmware and hardware protection firm
Eclypsium, “because they enable attackers to
gain fundamental control of enterprise devices,
subvert security controls, and persist invisibly,
undetected by traditional security solutions.”4

Operating systems are even more cybersecurity-
critical. They have far greater reach than
firmware. An OS has access to every application
that runs on top of it. If the OS is compromised,
all those applications could be compromised as
well. For this reason, Microsoft has called the
OS kernel “an emerging gap in (cybersecurity)
defense.”

The following example illustrates just how
dangerous that gap can be.

In 2017, Wikileaks revealed that the CIA had
“weaponized” numerous zero-day vulnerabilities
in iPhones, Google Android, Microsoft Windows,
Samsung smart TVs, vehicle control systems, and
other devices. These were vulnerabilities they
had either discovered, developed, obtained from
other agencies, or purchased from cyber arms
contractors.

A zero-day (or 0-day) is a software vulnerability
previously unknown to those who should be
interested in its mitigation, like the software
vendor. Until the vulnerability is mitigated,
hackers can exploit it to adversely affect
programs, data, additional computers, or a
network.

Wikileaks also revealed that the CIA had
subsequently lost control of its zero-day exploit
arsenal through unauthorized circulation among
former government hackers and contractors.
That arsenal had thus become available to hostile
governments, cyber mafia, and malevolent
hackers worldwide. Until all those target zero-
days are mitigated, millions of devices are at risk.

In order to reduce such risks, some OS designers
adopt modular architectures, using hypervisors
for example. Because you have several operating
systems running in parallel but isolated from one
another under the supervision of the hypervisor,
modularity can limit the spread of a malware
infection and keep your system running.

That type of risk reduction, however, can only go so far. If there are exploitable
flaws in your hypervisor, such security measures could all be for naught. Far
better to have no zero-day vulnerabilities whatsoever in your code.

WHITE PAPER 2022 6

LOW LEVEL CODE

Embedded systems
(and businesses) at high risk
According to the consulting firm RSK Cyber
Security, embedded systems are particularly
prone to cyberattacks5.

For businesses, this can present a serious risk, as
these devices are directly interconnected with
the core network of the company. A coding error
in an embedded device can provide an avenue
for an attack on the enterprise as a whole. The
flaw not only compromises the device; it could
take down the company’s entire network.

There are several reasons embedded systems
are so susceptible. First, they can be attacked
through vulnerabilities on two fronts, through
both the hardware and the code (software and
firmware). Second, integration with the IoT
(connectivity) increases the number of attack
vectors.

“Another reason is stuffing a small embedded
system with many functionalities leads to a lack
of security by design,” says Praveen Joshi of RSK
Cyber Security6.

To save memory space and limit power
consumption, developers of these embedded
applications often resort to non-standard coding
structures While done out of necessity, this
practice results in optimized code that makes
bugs hard to find.

COMMON VULNERABILITIES
AND RELIABILITY DEFECTS IN
LOW-LEVEL CODE
Many attacks on embedded systems target
vulnerabilities caused by bugs in low-level code.

One of the most common types of attacks
against embedded firmware and software
targets a coding error vulnerability known as
memory buffer overflow. This software weakness
was ranked #1 on the CWE Top 25 2019 list7.It
typically ranks highly from year to year and is
most prevalent in the C and C++ programming
languages.

“In this type of attack, hackers exploit the system
vulnerabilities to swamp the device’s memory,”
says Joshi. “Attackers manually fill the memory
buffer allocated to contain the moving data
inside the embedded systems. The OS of the
embedded system will attempt to record some
data in the memory section next to the buffer.
But, eventually, it will fail8.”

Other dangerous undefined-behavior
vulnerabilities include:

•Integer overflow errors

•Integer underflow errors

•Buffer overwrite errors

•Buffer overread errors

•Null pointer deference errors

These common coding errors also have
significant impact on overall reliability and
quality of the product. Software reliability
is an important factor in software quality
alongside security, performance and availability.
Software reliability is hard to achieve due to
high levels of complexity. In order to achieve
this, an acceptable level of reliability should be
specified and the software should be tested.
This implies the generation of a set of test data
corresponding to the desired reliability level.
It can be very difficult to this exhaustively at a
reasonable cost.

How can software development organizations
protect their products against such exploits and
reliability defects?

WHITE PAPER 2022 7

LOW LEVEL CODE

Traditional analysis and testing
are not the answer

The two standard solutions for software
verification and bug removal—and still the most
common methods used today by the majority of
software and systems developers—are traditional
static code analysis and software testing.

Unfortunately, both these methods have
shortcomings that are magnified when applied
to embedded systems and other low-level code
applications.

DRAWBACKS OF TRADITIONAL
STATIC ANALYSIS
Unlike applications that run atop an operating
system, low-level code doesn’t have the support
of an abstracted, generic platform created by an
operating system. It must take into account the
specifics of the hardware on which it runs and
any restrictions that hardware presents, such
as power consumption constraints or memory
limitations. Code for embedded systems often
has to meet very stringent timing requirements
as well.

For those reasons, low-level code often can’t
conform to coding standards built for upper-
layer applications. What’s more, low-level code
accesses memory in a manner that is quite
different from that of higher-level (abstracted)
applications. Traditional code analysis tools are
generally not equipped to deal with either of
these factors. As a result, they frequently yield a

high volume of false positives and false negatives
when applied to such code.

False positives

Traditional static analysis is based on a set of
rules that the static analysis tool expects code
to follow. These rules include standards of what
is considered good coding structure. In a static
analysis context, a “false positive” occurs when
the static analysis tool incorrectly reports that
one of its rules was violated.

Since low-level programmers must account for
the particulars of their target hardware and tend
to stray frequently from the rules of good coding,
low-level code is prone to high volumes of false
positives when conventional static analysis tools
and techniques are applied to it.

False positives tend to annoy developers because
they slow progress, increase the tedium of
the job, and waste precious time. They force
programmers to investigate issues that turn out
to be unimportant.

Developers get bored very quickly with verifying
errors flagged by their static analysis tools. The
tedium of spending days investigating large
numbers of false alarms can often lead them
to dismiss some warnings as false positives
when they are, in fact, true bugs. They thus
compromise the integrity and security they’ve
been trying to build into their system.

WHITE PAPER 2022 8

False negatives

“False negatives” are undefined behaviors (bugs)
that are missed and therefore not flagged by the
analysis tool.

Since the structure of low-level code is often
complicated due to its hardware constraints, it
may contain errors that traditional static analysis
tools are not programmed to recognize. Some
of these bugs may require a significant amount
of calculation to reveal—calculations that are
omitted from traditional static analysis tools in the
interest of returning results very quickly.

Thus, once you’ve managed to correct all the
bugs and verify all the false positives your static
analysis tool has found, you may be left with a
false sense of security. In reality, this is a very

dangerous feeling. Your tool has given you the
green light, but there may still be dozens or even
hundreds of bugs in your code. Some of them
could be very serious.

In a critical embedded system, these unflagged
errors—these false negatives—could be disastrous
for both the system manufacturer and their
customer, as they were in cases like:

•The WhatsApp Integer Overflow9,

•Toyota’s unintended acceleration firmware
problem10,

•Smiths Medical’s Medfusion 4000 Wireless
Syringe Infusion Pump 11, and

•The Boeing 787 integer overflow error12.

Drawbacks of traditional
software testing
Like traditional static analysis, software testing
also suffers from two major drawbacks when used
to verify low-level code, especially code that must
be either highly reliable or highly secure.

The first of these drawbacks is the length of the
testing process.

Traditional software testing relies on defining
test cases that account for as many operational
scenarios as possible. You then run tests until you
either (1) cover all your scenarios, or (2) run out
of time. The latter tends to be the more frequent
case.

For complex code, however, the number
of possible test cases—i.e. the number of
possible input and state combinations—can be
astronomical. Even a vaguely representative
subset of those cases could require more time
than the project schedule and budget will allow.

The second drawback, highly related to the first,
is test case coverage.

You may have an automated test campaign that
tests for millions of input value combinations,

but still, you can never test every combination
because there are simply too many. Even when
you stop finding errors, you’re never sure if you’ve
tested enough.

So, just as you don’t know how many bugs your
static analysis tool failed to flag, you don’t know
how many of those bugs also slipped past your
testing campaign.

Each of the drawbacks just discussed presents
a risk many organizations cannot afford to take.
They would be exposing their customers to
potential dangers which are difficult to predict. As
a consequence, they would be exposing their own
company to costly product recalls, prolonged
loss of revenue, potential lawsuits, and long-term
brand reputation damage.

So, again, how can companies protect
themselves? What can they use
instead?

WHITE PAPER 2022 9

LOW LEVEL CODE

Exhaustive static analysis and
its zero-defect guarantee

For many, the answer is exhaustive static
analysis.

Exhaustive static analysis is an alternative
to traditional static analysis. Rather than
sets of rules, exhaustive static analysis uses
mathematical formal methods to prove
unequivocally that your code is free from coding
errors and undefined behaviors that hackers can
exploit, or which could impact overall product
reliability.

The method was initially developed for formal
verification of safety-critical systems, like those
of the aerospace industry, where a software
failure could result in the destruction of property
and the loss of human life. Having evolved over
nearly two decades of refinement, it is now
approved for use in place of software testing for
the certification of airborne systems under DO-
178C, the aerospace industry’s de facto standard
for software certification13.

Exhaustive static analysis is a methodology that
makes use of a variety of formal methods to
answer the questions users ask about their code.
It takes know-how developed to guarantee the
behavior of safety-critical systems and expands

its scope to guarantee data cybersecurity as well
as safety and functionality. It makes that know-
how available to all developers for use in the
development of any device—from smartphones
to game consoles, from medical technology to
remote monitoring devices.

Exhaustive static analysis is also a framework
where a broad range of formal methods
collaborate as one. Its tools contain algorithms
that choose the right formal method according
to the question being asked. A good exhaustive
static analysis tool can switch seamlessly from
one formal method to another, depending on the
problem it has been asked to solve.

In other words, exhaustive static analysis is a
holistic approach, not one of brute force. Rather
than trying to solve every problem using a
single formal method, the framework has been
designed to determine which formal method or
combination of formal methods is best suited to
solving the problem at hand and to apply those
methods in the best way possible.

WHITE PAPER 2022 10

LOW LEVEL CODE

Ideally suited to low-level code
Software for safety-critical aerospace apps historically ran on bare metal—directly on the hardware—
with no OS in between. This was done primarily for two reasons.

The first is speed. Real-time operational flight programs like those used in flight control, navigation
and weapon control systems must be able to react very quickly to changing inputs from pilots and
sensors.

The second reason is memory limitation. Aircraft and spacecraft don’t have access to massive servers
or cloud storage. Low-level embedded code has to make do with the memory chips it has in its
own box. To deal with these constraints, programmers often have to resort to non-standard coding
structures to make the code run as efficiently as possible.

Having been developed to verify software in safety-critical systems, exhaustive static analysis is ideally
suited to verifying low-level code.

As mentioned earlier, traditional static analysis tools are not designed to deal with these complex,
non-standard structures. In contrast, exhaustive static analysis tools, having evolved in the aerospace
sector, were designed to look at the code the way the hardware sees it. For example, our tool,
TrustInSoft Analyzer, has specific features that enable you to specify precisely the hardware
characteristics and the toolchain. Based on this configuration, TrustInSoft Analyzer sees the software
product as it will be and run on the final hardware.

Sound tools
Exhaustive static analysis tools are what are called “sound” in the context of formal methods. That is,
they are designed so they will not miss a single defect and can be used to guarantee that a software
program is completely free of bugs and security vulnerabilities. They can even be used to guarantee
that the program complies exactly with its specification.

By being just as precise as the code’s compiler, these tools are able to thoroughly understand complex
low-level code and perform precise mathematical analyses on it.

Also, since the formal methods employed in exhaustive static analysis are mathematical proving
techniques rather than discrete test cases, they can be applied to wide ranges of input values all
at once. The iterative application of different sets of input values performed in traditional software
testing is not required when using formal methods. Ultimately, exhaustive static analysis saves a lot of
time in verification.

Designed so any developer can use them easily
What’s more, exhaustive static analysis does all this in a way that does not disrupt the normal software
development process. It brings the value of mathematical formal methods to software development in
a way that’s practically invisible to the developer.

Within an exhaustive static analysis framework, all the aforementioned selection and application of
formal methods are totally transparent to the developer. From the users’ perspective, they are simply
testing their code in a manner very similar to what they’re already accustomed.

The framework expands and automates the testing process. For example, by adding just a couple of
lines of code to your test script, you can expand a limited set of test cases into a complete set of test
cases covering the complete range of possible values for all input variables.

Again, you don’t need a PhD in formal methods to use these tools. Any developer can handle them. In
most cases, users don’t even need to be aware of the method the tool is using. They just express the
problem and the tool does the analysis automatically. It’s extremely easy for users to find answers. The
framework chooses the right tools for the problem and switches tools on the fly.

WHITE PAPER 2022 11

Ideal for verifying OS kernels
Exhaustive static analysis can also guarantee the absence of vulnerabilities or reliability critical bugs in
an operating system. An OS is, after all, a bare metal program—one that provides layers of abstraction
for the applications that run on top of it.

Developers of the operating systems used in many of today’s connected devices are finding it prudent
and justifiable to use exhaustive static analysis to guarantee their OS is defect-free. This is true for
those developing operating systems for their own products (like mobile phones and gaming consoles,
for example), as well as for those who license an off-the-shelf OS (like real-time OS and hypervisors)
for other manufacturers to use in the devices they produce.

At the moment, we have several customers who are so concerned about the security of their devices
that they have chosen to develop their (micro) OS themselves. They use TrustInSoft Analyzer to verify
the security of that OS.

Clearly, the next step is for device manufacturers to demand that the off-the-shelf operating systems
they are licensing from third parties are guaranteed to be free of all coding defects a hacker could
exploit or critical reliability bugs. Using TrustInSoft Analyzer, OS providers can provide that guarantee
today.

Use case example #2: Continuous
verification
Another customer has integrated TrustInSoft
Analyzer into their continuous verification process
for their trusted execution environments (TEE).

They don’t wait until a release to check their
code. Instead, every modified line in their code
base is reanalyzed automatically with TrustInSoft
Analyzer. This continuously repeating process
limits the number of issues uncovered with each
check and allows developers to resolve them
quickly.

Through continuous verification, bugs and
vulnerabilities are not left to accumulate over long
periods of time. This helps keep the development
process on track and preempts any nasty, last-
minute surprises that might slip your release date.

By the way, the customer who uses TrustInSoft
Analyzer in its red team activities also uses it for
continuous verification.

Use case example #1: Red team
activities
One of our customers has a red team—a team of
software security experts—who audits all the low-
level layers of their gaming platform.

At the end of every release cycle, they conduct a
“white hat” exercise, trying to find vulnerabilities
that “black hat” hackers might maliciously exploit.
The exercise assumes hackers have obtained
the code that is to be released. The red team
performs black box penetration testing and white
box analysis using TrustInSoft Analyzer.

With TrustInSoft Analyzer, they can find any subtle
issues that may have slipped through the normal
verification process.

For example, our own platform, TrustInSoft
Analyzer for C/C++, employs several abstract
memory models to analyze the software being
validated. This process is completely hidden
from users. They needn’t know anything about
them. TrustInSoft Analyzer has been designed
and developed so that no matter how a C/C++
developer programs, it will extract the meaning

of the code so that the right formal methods
are applied. It was cited in a National Institute of
Standards and Technology report to the White
House14 for having demonstrated that it can be
used to formally guarantee that (1) no known
undesired behaviors (bugs) are present in a
system and that (2) the system behaves exactly
according to its specification15,16.

Two use case examples
Customers are using TrustInSoft Analyzer in a variety of ways to ensure the security of their products.
Here are two examples.

WHITE PAPER 2022 12

LOW LEVEL CODE

What to look for when
choosing an exhaustive static
analysis solution

1. Applies a wide range of formal methods in a manner
transparent to the user

The field of formal methods covers a variety of methods that are
used to solve problems of logic and mathematics. Each method
was created and is best used for a specific type of problem. A
good exhaustive static analysis tool will be able to apply a wide
range of these methods to solve a wide variety of problems.
Only then can it hunt down the full range of possible undefined
behaviors and guarantee the security and functionality of your
low-level code and the data it should protect.

Furthermore, the tool should automatically select and apply
specific formal methods without the need for user intervention.
Scientists in the field of formal methods spend years learning how
to apply these complex techniques. Your developers shouldn’t
have to.

2. Fits seamlessly into your current development
process

Adopting an exhaustive static analysis tool shouldn’t disrupt
your current development process or even cause you to alter it
significantly. Using the tool should be similar to the experience you
now have using conventional software testing tools.

3.Offers several hierarchical levels of analysis

Tracking down and eliminating undefined behaviors and
guaranteeing the security and reliability of low-level code is an
iterative, cumulative process. The process benefits from taking a
step-by-step hierarchical approach, stepping from a basic level
of proof to more advanced levels, depending on what a given
application requires.

Choosing the exhaustive static analysis solution that’s right for your organization can be challenging.
Here are three important features to look for:

WHITE PAPER 2022 13

For example, TrustInSoft Analyzer offers three
levels of analysis.

Level 1 (fast analysis) is the simplest to use. It
is completely automated—as easy as ordering
a compile of your code. The user doesn’t even
have to look at the code to use it. Yet, Level 1 will
uncover a large portion of the bugs present in the
code without yielding any false positives.

Level 1 is ideal for use in a continuous integration
process. New bugs can be stripped out on a daily
basis before they accumulate, without developers
having to look for them.

Level 2 (exhaustive analysis) will guarantee that
all coding defects have been eliminated from
your code—that you have no undefined behaviors
present that can be exploited by hackers. Use of

Level 2 requires some operator intervention, but it
has a very low false positive rate (<10/10,000LOC
on average) and no false negatives. Level 2
provides you with a guarantee of the security
of your system if all the confirmed defects are
corrected.

Finally, for those applications that need it, there
is Level 3 (functional proof). Level 3 guarantees
your code fulfills its specification exactly.
Functional proof takes longer and is more costly
than defect testing, but for applications that
need to be perfect—OS kernels, hypervisors and
certain firmware applications like secure boot, for
example—it is well worth it. The return is huge.
You have a guarantee that your critical application
works exactly as specified.

Conclusions

Embedded code is everywhere. Its security is pivotal to the well-functioning of our society,
whether in critical systems or consumer electronics. Connected device manufacturers, their
corporate customers, and consumers all need and expect their devices to protect their
valuable, sensitive data from theft or destruction by malicious hackers.

In parallel with software security, software
reliability plays a key part in software quality.
Software reliability is difficult to achieve. As more
and more software is embedded into systems,
all stakeholders need to be confident that the
software will not cause any disasters.

Along with electronic hardware, low-level
software and firmware are the bedrock of trust
for these devices. Unfortunately, traditional static
analysis tools and software testing are no longer
adequate for ensuring high-quality code and the
necessary level of code security and reliability in
low-level applications.

Traditional static analysis tools, having been
designed for use on top-layer applications that

run on operating systems, are not well-adapted
to analyzing intricate low-level code. Traditional
software testing is too time-consuming and
therefore too costly to handle the scope of the
problem. The number of test cases and possible
input combinations is far too great.

Exhaustive static analysis, based on mathematical
formal methods, is a solution to the principal
challenges of verification and validation in
embedded environments. It can guarantee the
total elimination of the vulnerabilities from
low-level code that hackers exploit to breach
embedded systems and other electronic devices,
as well as the coding errors that compromise their
reliability.

WHITE PAPER 2022 14

1.	 Hasan, Mohammad; State of IoT 2022: Number of connected IoT devices growing 18% to
14.4 billion globally, IoT Analytics, May 2022.

2.	 Security Signals, Microsoft, March 2001.

3.	 Seals, Tara, 80% of Global Enterprises Report Firmware Cyberattacks, Threatpost, April

2021.

4.	 The Top Five Firmware Attack Vectors, Eclypsium, December 2020.

5.	 Joshi, Praveen, Common Attacks On Embedded Systems And How To Prevent Them, RSK

Cyber Security, August 2022.

6.	 Ibid.

7.	 2019 CWE Top 25 Most Dangerous Software Errors, Mitre, July 2021.

8.	 Joshi, Praveen, Common Attacks On Embedded Systems And How To Prevent Them, RSK

Cyber Security, August 2022.

9.	 Pieter Arntz, Critical WhatsApp vulnerabilities patched: Check you’ve
updated!,Malwarebytes Labs, September 2022.

10.	Dunn, Michael, Toyota’s killer firmware: Bad design and its consequences, EDN, October

2013.

11.	 ICS Advisory (ICSMA-17-250-02A): Smiths Medical Medfusion 4000 Wireless Syringe
Infusion Pump Vulnerabilities (Update A), CISA, September 2017.

12.	 Goodin, Daniel, Boeing 787 Dreamliners contain a potentially catastrophic software bug,

Ars Technica, May 2015.

13.	 Moy, Y., Ledinot, E., Delseny, H., Wiels, V., Monate, B., Testing or Formal Verification: DO-
178C Alternatives and Industrial Experience, IEEE, April 2013.

14.	Black, P., Badger, L., Guttman, B., Fong, E., Dramatically Reducing Software
Vulnerabilities: Report to the White House Office of Science and Technology Policy;
National Institute of Science and Technology (NIST), November 2016.

15.	 Bakker, P., Providing assurance and trust in PolarSSL, Offspark, May 2014.

16.	Regehr, J.; Comments on a Formal Verification of PolarSSL; https://blog.regehr.org,

September 2015.

LOW LEVEL CODE

References

https://iot-analytics.com/number-connected-iot-devices/
https://iot-analytics.com/number-connected-iot-devices/
https://www.microsoft.com/en-us/security/blog/2021/03/30/new-security-signals-study-shows-firmware-attacks-on-the-rise-heres-how-microsoft-is-working-to-help-eliminate-this-entire-class-of-threats/
https://threatpost.com/enterprises-firmware-cyberattacks/165174/
https://eclypsium.com/wp-content/uploads/2020/12/The-Top-5-Firmware-Attack-Vectors.pdf
https://rsk-cyber-security.com/blog/common-attacks-on-embedded-systems-and-how-to-prevent-them/
https://cwe.mitre.org/top25/archive/2019/2019_cwe_top25.html
https://rsk-cyber-security.com/blog/common-attacks-on-embedded-systems-and-how-to-prevent-them/
https://www.malwarebytes.com/blog/news/2022/09/critical-whatsapp-vulnerabilities-patched-check-youve-updated#:~:text=CVE%2D2022%2D36934%3A%20An,a%20given%20number%20of%20digits.
https://www.malwarebytes.com/blog/news/2022/09/critical-whatsapp-vulnerabilities-patched-check-youve-updated#:~:text=CVE%2D2022%2D36934%3A%20An,a%20given%20number%20of%20digits.
https://www.edn.com/toyotas-killer-firmware-bad-design-and-its-consequences/
https://www.cisa.gov/uscert/ics/advisories/ICSMA-17-250-02A
https://www.cisa.gov/uscert/ics/advisories/ICSMA-17-250-02A
https://arstechnica.com/information-technology/2015/05/boeing-787-dreamliners-contain-a-potentially-catastrophic-software-bug/
https://ieeexplore.ieee.org/document/6471965
https://ieeexplore.ieee.org/document/6471965
https://ieeexplore.ieee.org/document/6471965
https://csrc.nist.gov/publications/detail/nistir/8151/final
https://csrc.nist.gov/publications/detail/nistir/8151/final
https://csrc.nist.gov/publications/detail/nistir/8151/final
https://polarssl.org/tech-updates/blog/providing-assurance-and-trust-in-polarssl/
https://blog.regehr.org/archives/1261

About TrustInSoft
Since our beginnings, TrustInSoft Analyzer has been adopted by industry-leading companies around the world to

ensure sound cybersecurity in their low-level code.

TrustInSoft participates in the Application Security Testing market alongside vendors such as Mathworks, Parasoft,

Synopsys and Veracode. TrustInSoft Analyzer is a hybrid static and dynamic code analyzer that automates

Formal Methods to mathematically guarantee C/C++ code quality, security and safety. TrustInSoft has customers

worldwide in the automotive, IoT, telecom, semiconductor, aeronautics and defense industries. The company

received awards and recognition from NIST, RSA and Linux Foundation.

To learn more about TrustInSoft Analyzer, visit trust-in-soft.com/product/trustinsoft-analyzer.

If you’d like to speak with a TrustInSoft technical representative about how TrustInSoft Analyzer can meet your

organization’s specific needs, contact us by email at contact@trust-in-soft.com.

contact@trust-in-soft.com

Phone : +33 1 84 06 43 91 or +1 (408) 829-5882

mailto:contact%40trust-in-soft.com?subject=
https://twitter.com/TrustInSoft
https://www.linkedin.com/company/trustinsoft/
https://www.youtube.com/channel/UCsqaS4-U1DpIq_v6sH5WKzw
https://twitter.com/TrustInSoft
https://www.facebook.com/TrustInSoft/

	Case Study
	Lorem Ipsum
	Heading One
	Heading Four

