
TRUSTINSOFT EBOOK - SEPTEMBER 2020

UPGRADE YOUR
EXISTING TEST
SUITE WITH
TRUSTINSOFT

By Jakub Zwolakowski

Introduction

All serious developers and project managers pride themselves on the

quality of code they create and maintain. Acutely aware of the disastrous

consequences which may arise from unnoticed bugs and vulnerabilities (e. g.

Heartbleed, Toyota Recall 2018), they put tremendous effort into ensuring that

their software is robust, correct, and secure.

During long busy days, with caffeine rushing through their veins and the cool

breeze of air conditioning blowing in their faces, they steadily navigate through

the treacherous maze of pull requests in front of them. Composed and careful,

they never advance into uncharted territory without thorough preparation. They

move forward only if the way is deemed safe: after meticulously designing

proper test cases and doing their very best to steer clear of any foreseeable

hazards.

But their duty does not end there! During long sleepless nights, in a

dim glare of computer screens and soft hum of cooling fans, these valiant men

and women persist by their posts. Despite the fatigue they stare incessantly at

the sea of code they feel responsible for, their sharp eyes scrupulously

reviewing each line with focus and perseverance, scanning for any sign of

danger...

Such is the fate of these stalwart individuals, ever compelled to carry

the heavy burden of responsibility and uncertainty! This is especially true for

those working with C or C++ (by far the most fearless and resolute of all

developers), who are accustomed to wrestling an element so incredibly

powerful and volatile yet so often deployed where stakes are highest, and peril

abouns. The single chilling question repeated in the backs of their minds

whenever their code is deployed to production: “What if I missed something?”.

 PAGE 2

 PAGE 3

Because they know that no matter how many test suites were prepared and

executed, how strictly coding guidelines were enforced, to what extent

sanitizers were employed, and how many hours were spent carefully

reviewing the code, this risk remains very real: they might have missed

something.

Yes, despite all their endless sweat and toil, there can never be a complete

guarantee for safety and security of their software!...

Despair no more, brave developers and gallant project managers!

TrustInSoft Analyzer provides such guarantees. Strong mathematical

guarantees, based on formal methods and backed with decades of scientific

research. Our solution relies on exact techniques (like abstract interpretation)

in order to prove properties of programs written in C/C++. No more

uncertainty, no more hoping for the best! Instead, hard evidence that allows

us to actually finally trust the software.

You might have heard about formal verification. It is a wholly different

paradigm than verification by testing. On the one side, the level of assurance it

provides, concerning both safety and security of the analyzed code, is

radically superior compared to other available methods. On the other side

though, formal verification of a program is considered to be a difficult,

expensive, and time-consuming process which requires skill and experience.

Due to the high cost, in terms of both time and effort, this approach does not

suit everyone: according to Wikipedia, formal verification may be even as

much as 80 percent of the total design cost. This is why up

until now it was mostly used only for particularly critical pieces of code.

PAGE 4

TrustInSoft opens a brand-new door into the marvelous realm of formal

verification, providing a way of entry accessible for every developer! We make

this powerful technique considerably more attainable thanks to our hybrid

solution, as we equip developers with tools that empower them to gradually

lift a C/C++ project from the level of verification by testing to the level of

formal verification. By virtue of these tools and the accompanying

methodology such a feat can be achieved with minimal added effort, mostly

by leveraging already existing test suites.

Essentially, we strive to provide a light and easy access to the many blessings

of state-of-the-art formal verification techniques without the need to perform a

heavy and difficult full-scale analysis of the code traditionally required to

obtain such results.

PAGE 5

Content

Systematic approaches to developing correct
software..

Automated testing / test generation...

Dynamic checking tools..

Pattern-matching tools (“traditional” static analysis)..........

Correct from the ground up...

Full formal verification..

Hybrid solution..

What is TrustInSoft Analyzer? What does it do?...................
Difference..

Guarantees...

Deployment...
Requirements...

Source code: complete C/C++ projects...........................

Existing test suite..

Know-how: to compile and build the project.................

Run, correct, rerun, guarantee!...

Summary..

6
6
7
8
9
9
10

11
11
12

14
14
14
14
14
14

16

We may employ various techniques of

automatic or semi-automatic testing or

test generation to greatly enhance test

coverage and pertinence. For example,

fuzzing is a highly adaptable and efficient

method for providing invalid,

unexpected, or random inputs for a given

program for testing purposes. Using tools

that implement such techniques is an

excellent idea which we recommend

wholeheartedly.

The important thing to keep in mind

though is that no matter how advanced a

methodology or a tool is applied, the

result, basically, is more tests and / or

better tests. And unfortunately it is

impossible to test each and every existing

scenario of non-trivial program’s

execution one by one, there are too many

of them.

PAGE 6

Systematic
approaches
to
developing
correct
software
When one wishes to develop a correct

program, writing a set of tests is usually

the first solution which comes to mind.

And it is a pretty good one! A set of

rudimentary tests is a quick, simple, and

effective means to rapidly find the most

glaring faults in the code. However, a set

of manually crafted test cases can only

get us so far. The problem of building

safe and secure software must be

eventually tackled in a more systematic

manner if the goal is to achieve a

reliable outcome. There are several

distinctive perspectives and approaches

which allow advancement on the

glorious path towards correct code.

Automated
testing / test
generation
The efficacy of testing itself can be

vastly improved using dedicated

methodologies and tools.

Now, one step further from testing there

is dynamic checking. Tools that

implement this approach are known as

sanitizers. Verification still happens

mostly on the level of executables:

sanitizers help to determine whether the

program is engaging in any dangerous

behaviour when being executed. Their

added value, on top of traditional testing,

is that suchtools reveal some hidden

problems which do not impact test

results or directly cause runtime

errors.Two main techniques are

employed to track what a program is

actually doing under the hood. The first

technique is to insert additional

instrumentation into the original source

code during compilation (some

sanitizers work simply as compiler

extensions, e.g. for Clang we have ASan,

UBSan, MSan, and TSan). The second

technique is to simulate the program’s

execution in a virtual environment

controlled and monitored by the sanitizer

(e.g. Valgrind).

As both these methods allow for a deeper

level of assurance about the correctness

of a program's behavior on particular test

cases, sanitizers can be roughly

summarized as testing on steroids. We

perform the same tests as usual, but we

discover more problems. We do not only

see what is happening on the surface of

the water (i.e. check the test’s results), we

can also peek a little bit below the waves

to get an idea of what lurks beneath (i.e.

check if some dangerous operations were

performed during the test execution).

Probe the same points, detect ten times

more krakens! Nice!

 PAGE 7

Testing can be compared to probing the

waters to check for rocks (or sea

monsters), which may hide under the

surface, before veering forward.

Dynamic
checking tools

“This is Yellow Submarine reporting to the Command!

We’ve got a visual on that deadly Giant Octopus. It is

lurking in the shade, in what seems to be some kind of

a garden, well hidden under the sea... Requesting

immediate debug at our coordinates!”

PAGE 8

Using sanitizers is thus a direct improvement

over simple testing and as such it is highly

recommended. Their main shortcoming is

that even though such tools discover many

faults, they are still not exhaustive, therefore

can miss some serious problems. Sanitizers

are, in essence, debuggers: they help to find

and understand faults in the code, but they

will never be able to guarantee to eliminate

all the faults.

The caveat here is buried in the main

assumption underlying these tools: the

assumption that by making code nicer,

we will also make it more correct. Of

course, neither making code nicer (e.g.

elegantly written, well structured,

abundantly annotated) nor blindly

following any coding standard actually

guarantees correctness. That said,

following style guidelines or coding rules

and writing elegant code is actually not a

half bad idea. Keeping everything tidy

and manageable may not be the ultimate

solution to all problems, but it definitely

helps eliminate some immediate errors,

and yields undeniable maintenance-

related gains in the long run.

Every sailor knows that you should keep

your boat clean and orderly. This is not

for aesthetic reasons, but for safety!

Order makes issues easier to spot and

thus helps to avoid potential disasters. Of

course, it does not stop a rope from

snapping. Yet, it definitely improves a

sailor’s chances of noticing that a rope is

fraying or that it has snatched onto

something. And this increases the odds

of preventing the problem in time or at

least allows for the mitigation of

consequences.

Pattern-
matching tools
(“traditional”
static analysis)

Another interesting set of tools are the so-

called linters. Linters work directly on the

source code level and use pattern-matching,

and sometimes other traditional static

analysis techniques, in order to find and flag

potential problems. Depending on their

sophistication, these tools can detect many

different classes of issues: obvious

programming errors, violations of style

guidelines, usage of suspicious constructs,

etc. Using a linter is a great way to improve

general code quality and spot bugs.

Moreover, this category of tools is pretty

handy when striving to reach conformance

with a particular coding standard (e.g. Misra,

Cert C) especially in the area of style-related

rules and recommendations.

One radical approach to eradicating bugs

and vulnerabilities is to not make them in the

first place. There are several technologies

and frameworks that aim at designing and

building correct software from the ground

up. For example, the SCADE Suite employs a

formally-defined domain-specific language

to express what the program should do and

then it generates executable C/C++ code

that is correct by design. Some other

noteworthy examples are the B method,

used for safety-critical systems, and Cryptol,

used for cryptographic algorithms.

These are extremely effective approaches,

which render it virtually impossible to

introduce implementation-level faults in the

program. And, in an ideal world following

one them would be recommended

whenever possible. Unfortunately, in

practice such techniques come with

substantial constraints which make them

suited exclusively for very strict

development processes like those for

writing embedded critical software.

Moreover, they are definitely not applicable

to existing programs, at least not unless

rewriting them completely is an option.

So, unless you are ready to ditch your

magnificent tall ship and build a cable ferry

instead, this is hardly the solution for you.

PAGE 9

Correct from the
ground up

Full formal
verification
Rounding up this list, there is the idea of

fully verifying software formally. Formal

verification of a piece of code is

undeniably superior to both testing and

pattern-matching, as it provides actual

mathematical guarantees concerning

the software’s safety and security

properties. And with a tool like

TrustInSoft Analyzer such an

undertaking is within the realm of

feasibility (even if it remains a rather

ambitious task, especially for a beginner).

Maybe, you know, use maths instead of YOLO?…

Formal verification is much like creating

a mathematical model of the ship,

analyzing its behavior with respect to the

sea, and proving some properties about

it (e.g. that it is sea-monster-proof). Which

is in fact not so far from what we do when

designing boats, cars, bridges, or other

physical objects used by people!

Important aspects of such objects, like

material endurance versus weight to bear,

are mathematically determined and

calculated using models based on our

understanding of the laws of physics. Doing

the same for programs seems nothing but

sane and rational.

The solution we advocate proposes to

boldly go in the direction of formal

verification, but it strives to eliminate the

daunting difficulty of performing such a

verification to the full extent. To decrease

this difficulty we will be aiming a bit lower

(narrowing the verification’s objectives) and

piggybacking on existing groundwork

where possible (which cuts down the

amount of the extra work needed).

PAGE 10

Hybrid solution

So, instead of attempting to

formally verify a C/C++ program

with all the bells and whistles, our

goal is to benefit from as many

advantages of formal verification as

possible with minimal effort. We

achieve it with TrustInSoft Analyzer

by following a specific

methodology based on leveraging

existing test suites.

Even taking a single small step toward

formal verification of a piece of code is

precious. It unlocks access to results and

benefits that are unachievable by simple

testing or even dynamic checking. As in

our approach formal verification is fueled

by the tests, it can be combined perfectly

well with all the test generation

techniques which we mentioned before,

further amplifying their efficiency. In

addition, completing the first step opens

the door for potentially continuing the

route to complete formal verification

The TrustInSoft Analyzer is a powerful and

versatile tool used for advanced verification

of C/C++ software. It can determine with

mathematical certainty whether the

provided code is safe and secure by

detecting undefined behaviors or proving

the absence of those behaviors.

Here, we use the Analyzer in a very specific

way, though: we tailor it for a much narrower

and more specific purpose. Thanks to this

particular configuration, called the

Interpreter Mode, we can circumvent all the

complexity traditionally involved when

performing a full-blown analysis, and we can

apply the Analyzer almost directly to existing

test suites with minimal setup effort.

PAGE 11

What is
TrustInSoft
Analyzer?
What does it
do?

Difference
When software is tested, it usually means

that the compiled program is executed on a

computer, and its actual behavior is

compared to how it was expected to

behave. In other words: the program is fed

specific inputs (defined by given test case)

and its outputs are checked for errors.

TrustInSoft Analyzer does not execute a

compiled program natively on the

machine where it runs. Instead, it works

on the program’s source code level,

interpreting it line by line and simulating

the program’s behavior in a virtual

environment. Based on complete formal

understanding of the C/C++ language

semantics and a complex model of the

computer’s memory, this simulation is

mathematically sound.

When I write phrases like “complete formal

understanding of the C/C++ language semantics and a

complex model of the computer’s memory” I imagine

something like in this picture, blinking and buzzing,

and I nod my head knowledgeably, feeling very smart

for a short moment.

What does it mean? The program is no longer

a black box. All the details and fine points of

its internal behavior become observable.

Now, not only the program’s outputs can be

checked for errors, but everything that

happens during the program’s execution can

be thoroughly examined and verified for

signs of trouble. In difference to the dynamic

checkers, this verification is sound and

exhaustive: we detect all the faults without

fail. Yes, all of them.

PAGE 12

Why is this important? Because programs

are vicious little clever beasts. They are fully

capable of committing most atrocious,

forbidden, and dangerous things. And they

can hide their crimes so well that they can

go unnoticed for a very long time. Moreover,

these monsters do not even feel guilty about

it… And then one day, when you go down to

the basement you stumble upon all these

cadavers stuffed in the dark corner, and your

program just goes “But why are you mad? I

was not supposed to do that?”. So, do not

trust them. Install cameras in your proverbial

basement. Be safe.

In other words (coming back from whatever

happened in the previous paragraph!…), it

may happen that the program’s naughty

behavior does not cause a runtime error and

does not change the test’s result. In this case

it is not observable in any way during

testing. It may even be that such behavior is

masked by the compiler’s optimization or it

triggers only on a particular target

architecture in specific circumstances. In

this case it is not detectable by a sanitizer

either. And just like that, because of

unfavorable circumstances, the problem

might get overlooked. A bug or vulnerability

will remain concealed, lurking somewhere in

the program, waiting to be exploited…

Writing outside of array’s bounds is a perfect

example of such a situation.

In some cases, out-of-bound writing will not

cause a runtime error and will not alter the

program’s output.

Maybe it will just change the value of

some random object in a way that very

rarely impacts the program’s behavior.

Maybe the whole write operation will

even get completely optimized away

during compilation. And then, one

beautiful day, some unfortunate event or

a malevolent hacker discovers a

combination of parameters and

environment variables which causes this

out-of-bound access to be executed in a

way that actually does something

consequential and… well, the day is not

so beautiful anymore!

Guarantees
TrustInSoft Analyzer detects if such

dangerous behaviors can happen during

the program’s execution. In fact, it is

capable of doing much more than just

detecting them. When the Analyzer

concludes that certain faults do not

appear in a program, this does not only

mean that it cannot find any.

This means that it has

mathematically guaranteed the

total absence of a certain

category of problems in the

perimeter of given test cases.

And this is not an uncertain and meek “well,

umm, so I’ve searched around a bit and I

could not really find any more problems, so I

guess we should be safe now” situation.

This is a serious and reassuring “There are

no problems left, Sir! We have taken care of

them all, Sir! You can trust me on that, Sir!”

situation.

PAGE 13

Deployment
Now, enough talking about the wonderful

advantages of TrustInSoft Analyzer (which is

easy to use, formally sound, fully exhaustive,

soft to the touch, and provides incredibly

strong mathematical guarantees). Let us

discuss what is necessary to deploy this

magnificent tool on an actual C/C++ project.

Should Doge become our Brand Ambassador?

Requirements

Source code:
complete C/C++
projects

TrustInSoft Analyzer works directly on the

source code level. In order to carry out a

meaningful analysis of a program, it requires

access to all the C/C++ source code that the

given project uses or includes. The tool does

not make guesses about the source code, it

only works within a well-defined context.

PAGE 14

This constraint restricts the Analyzer

applications to complete C/C++ projects:

the code of all the dependencies must

be available. Otherwise, an adequate

stub for every called external function

whose source code is not available must

be provided. In such a case the setup

unfortunately requires some additional

effort. But that is the price of

exhaustiveness.

Existing test suite
The methodology presented here is

based on leveraging existing test suites.

We analyze the program’s behavior by

performing abstract interpretation of all

the available test cases. Thus a test suite

with significant coverage greatly

increases the profitability of this

approach.

Know-how: to
compile and build the
project

When working on a complex multi-file

project, TrustInSoft Analyzer needs to

know how the whole project is compiled

and built: which source code files are

used, which headers should be included,

what compilation options should be set,

etc. This is necessary in order to properly

parse and analyze any complex

code.This know-how might have

different shapes and forms.

Sometimes all the instructions about

building and compiling are just written in

plain English in a single README file.

Usually though some kind of a build system

is used (for example the project comes with

a regular Makefile). Either way, when setting

up TrustInSoft Analyzer, all the relevant

pieces of information must be extracted

from these sources. Luckily, some helper

tools that facilitate this process (e.g. by

intercepting all such parameters during the

program’s standard build procedure) are

available.

PAGE 15

Run, correct, rerun,
guarantee!
Now, the Analyzer can be run on each of all

the tests which constitute the program’s test

suite. If undefined behavior is detected in a

test, the Analyzer provides a specific

warning. The underlying program faults are

investigated and corrected. Then, the

Analyzer is run again and again to discover

subsequent problems, each of which is

corrected one by one, until no more

undefined behaviors are found in the

code.And when the tests finally pass

through the Analyzer without any warnings,

this means something quite amazing. It

means that the corresponding execution

paths in the source code are guaranteed to

be 100% free of undefined behaviors.

Mathematically proven, pinky promise!

So what now? What happens when the

whole test suite passes through the Analyzer

without raising any alarms?

First: incorporating TrustInSoft

Analyzer in your continuous

integration efforts. All the difficult

groundwork has just been prepared,

so if you already have some

continuous integration activities

going on, mixing in the Analyzer

should be straightforward. Currently

we are in the process of developing a

dedicated continuous integration

service for projects hosted at GitHub,

stay tuned!

Second: extending the existing test

suite. Writing new tests, or

generating them using a dedicated

tool, now will not only augment the

test coverage, but also the analysis

coverage. All the execution paths

added to the analysis perimeter will

be guaranteed clear of undefined

behaviors.

Well, that’s it! The job is done! Now you

can finally sit in that soft, comfortable

armchair in front of the glowing fireplace,

open that priceless bottle of old

bourbon, light that exquisite Cuban

cigar, and rest! And try to enjoy some

well-deserved peace of mind for a while…

Or immediately get back to work,

because you hate comfy furniture, open

flames, alcohol, smoking, idleness, and

generally being relaxed! Arrr!

So, three major axes for improvement

present themselves at this point:

Third, moving towards more complete

formal analysis. With TrustInSoft

Analyzer, the existing test drivers can be

generalized until the analysis perimeter

stretches throughout the whole

program, and exhaustive verification is

reached.

The infamous three major axes for improvement.

Ba-dum-tsss…

Summary
All serious developers and project managers

pride themselves on the quality of code they

create and maintain. Acutely aware of the

disastrous consequences which may arise

from unnoticed bugs and vulnerabilities,

they put tremendous effort into ensuring

that their software is robust, correct, and

secure.

Testing is not enough to verify software that

matters for security and safety.

PAGE 16

Formal verification can satisfy such high

concerns, but requires a significant effort

for deployment. It is rarely used on non-

critical software. Other techniques

(automatic test generation, dynamic

checking, pattern-matching static

analysis, etc.) are pretty good ways to

complement or improve testing, but do

not address the core of the problem.

We propose a new hybrid approach,

based on deploying TrustInSoft Analyzer

on existing C/C++ projects, and

leveraging their current test suites for

immediate gains. This provides the

benefit from the strong mathematical

guarantees associated with formal

methods, in the whole perimeter covered

by the test suite, without investing all the

time and effort needed to fully verify a

program formally.

Hopefully, such a solution will help make

formal verification more accessible and

allow more C/C++ developers to enjoy its

ample advantages. They will start

sleeping better at night and living

happier lives, relaxed and serene,

knowing that their programs are finally

free of bugs and vulnerabilities. And

what is more gratifying than safe and

secure software? A smile of bliss on a

developer’s face, of course!

