A Why3 framework for reflection proofs
and its application to GMP’s algorithms

Guillaume Melquiond® Raphaél Rieu-Helft?1

linria 2TrustInSoft

July 15, 2018

g 55 TRUSTESOFT

Context, motivation, goals

goal: efficient and formally verified large-integer library

GMP:
e widely-used, high-performance library
o safety-critical
e tested, but hard to ensure good coverage (unlikely branches)

@ correctness bugs have been found in the past

idea:
© formally verify GMP algorithms with Why3
@ extract efficient C code

L e gD

R
Tool: the Why3 platform

file.mlw approach:
Alt-Ergo

@ implement GMP algorithms and
their specifications in WhyML

o prove Why3-generated
verification conditions

@ extract to C

main challenge: how to keep proof
[file.mlj [file_cj effort manageable?

L PR

Reimplementing GMP using Why3

Reimplementing GMP using Why3

Reimplementing GMP using Why3

An example: comparison

large integer = pointer to array of unsigned integers ag . ..a,—1 called limbs
n—1
a.---an1=y_ aip usually 3
i=0
let wmpn_cmp (x y: ptr uint64) (sz: int32): int32
= let i = ref sz in
try
while !'i > 1 do
i:=14-1;
let 1x = x[!i] in
let 1y = y[!'i] in
if 1x # ly then
if 1x > 1y
then raise (Return32 1)
else raise (Return32 (-1))
done;
0
with Return32 r — r
end

— 264

(R. Rieu-Helft, C. Marché, G. Melquiond, How to Get an Efficient yet Verified
Arbitrary-Precision Integer Library, VSTTE'17)

e RN

Reimplementing GMP using Why3

Example specification: long addition

n—1 .
specifications are defined in terms of the function value(a,n) =) a;5'

i=

(¥* ‘wmpn_add_n 7 z y sz adds ‘(z, sz)‘ to ‘(y, sz)‘ and writes the
result in ‘(r, sz)‘. Returns carry, either 0 or 1.
Corresponds to ‘mpn_add_n‘. *)

let wmpn_add_n (r x y: ptr limb) (sz: int32) : limb

requires { valid x sz }

requires { valid y sz }

requires { valid r sz }

ensures { value r sz + (power radix sz) * result
= value x sz + value y sz }

ensures { 0 < result < 1 }

writes { r.data.elts }

L TR e G

Why3 implementation

while !i < sz do

invariant { 0 < 'i < sz }

invariant { value r !i + (power radix !i) * !c =
value x !i + value y !i }

invariant { 0 < !¢ < 1}

1x := x['i];
ly := y['il;
let res, cl = add_with_carry !1x !1y !c in
r[!i] < res;

c := cl;
i:=11+1;
done;
'c

Why3 implementation

while !i < sz do
variant { sz - !'i }
invariant { 0 < 'i < sz }
invariant { value r !i + (power radix !i) * !c =
value x !i + value y !i }
invariant { 0 < !¢ < 1}
label StartLoop in
1x := x['i];
ly := y[!il;
let res, cl = add_with_carry !1x !1y !c in
r[!i] < res;
assert { value r !i = (value r !i at StartLoop) };
c := cl;
value_tail r !'i;
value_tail x !i;
value_tail y !'i;
assert { value r (!i+1) + (power radix (!i+1)) * !c =
value x (!i+1) + value y (!i+1)

by ...
s0 ...(* 10+ lines *) };
i=13i+1;
done;
'c

L e oD

Reimplementing GMP using Why3

Motivation

total proof effort (add, sub, mul, div, logical shifts) (vsTTE17) :
~ 6000 lines of Why3 code

@ ~ 1500 of programs

@ ~ 500 of specifications

@ ~ 4000 of proof cuts

This is too much work!

SMT solvers fail because of large proof contexts, nonlinear arithmetic...
= many long assertions are needed even for some “easy” goals

L e G

Reimplementing GMP using Why3

Zooming in

assert { value r (!i+1) + (power radix (!i+1)) * !c =
value x (!'i+1) + value y (!'i+1) };

Generated verification condition:

H: wvalue rl i + (power radix i) * cl = value x i + value y i x1

Hi: res + radix * ¢ = 1x + 1y + cl X power radix i
H2: value r i = value rl1 i x1
H3: value x (i+1) = value x i + (power radix i) * 1x x(—1)
H4: value y (i+1) = value y i + (power radix i) * ly x(—1)
H5: value r (i+1) = value r i + (power radix i) * res x1

g: value r (i+1) + power radix (i+1) * c = value x (i+1) + value y (i+1)

the goal is actually a linear combination of the hypotheses

L e O

© Computational reflection in Why3

© Effectful programs as decision procedures

Computational reflection in Why3

Computational reflection in Why3

Toy example: equality in a ring
goal: prove equalities such as M = M’ with

M = A11Bi1+A12Bos
M = (A11+Az2) - (B11+Ba2)+Azs-(Ba1—Bi1)
— (A1 4+ A1) Boo+ (Ao — Azo) - (Ba1 + Bapo)

SMT solvers time out in practice
idea: embed terms into the logical language of Why3

type t = Var int | Add t t | Mul t t | Sub t t

let rec function interp (x: t) (y: int — a) : a =
match x with
| Var n — y n
| Add x1 x2 — (interp x1 y) + (interp x2 y)
| Mul x1 x2 — (interp x1 y) * (interp x2 y)
| Sub x1 x2 — (interp x1 y) - (interp x2 y)
end

L RS

Computational reflection in Why3

Decision procedures

function eq_zero (x:t) : bool
= match x with
(* purely functional code, structurally decreasing arguments *)

lemma zero_sub_eq:
forall x1 x2 y. eq_zero (Sub x1 x2) — interp x1 y = interp x2 y

eq_zero computes a normal form, but no need to prove (or define) that
= this proof is very easy

to instantiate the lemma, we need to guess x1, x2, y such that

interp x1 y=M interp x2 y= M’

L I SE e

Computational reflection in Why3

Reification
heuristic approach: invert zero_sub_eq and the body of interp

type t = Var int | Add t t | Mul t t | Sub t t

let rec
match
| Var
| Add
| Mul
| Sub
end

lemma zero_sub_eq:
forall x1 x2 y. eq_zero (Sub x1 x2) —

function interp (x: t) (y: int — a) : a =

X
n

x1 x2 — (interp x1 y) + (interp
x1 x2 — (interp x1 y) * (interp
x1 x2 — (interp x1 y) - (interp

with
—yn

goal g: fooa+b=c*Db

[foo a +
[foo a +
Add [foo
Add (Var
Add (Var
Add (Var

b

bl
al
0)
0)
0)

= c * b]

= [c * b]

[0] = [c * bl

(Var 1) = [c * b]

(Var 1) = Mul [c] [b]

(Var 1) = Mul (Var 2) (Var 1)

x2 y)
x2 y)
x2 y)

interp x1 y = interp x2 y

y 0 = foo a
y1=>»
y2=c

L R RENEE

14 / 23

Computational reflection in Why3

Extension: reifying the proof context

function interp_eq (g:equality) (y:vars) (z:C.cvars) : bool

= match g with (gl, g2) — interp gl y z = interp g2 y z end

function interp_ctx (1:list equality) (g:equality) (y:vars) (z:C.cvars) : bool

= match 1 with
| Nil — interp_eq g y z (* goal *)
| Cons h t — (interp_eq h y z) — (interp_ctx t gy z)

end
@ recognize implication and recursive call in the Cons branch
@ one element of the list = one hypothesis in the proof context
@ heuristic: match all possible hypotheses in the proof context against
the left-hand side

L TRy

Computational reflection in Why3

Reflection as a Why3 transformation

lemma zero_sub_eq:
forall x1 x2 y. eq_zero (Sub x1 x2) — interp x1 y = interp x2 y

synopsis:
@ guess appropriate values for parameters using the reification procedure
@ ask the user to prove the premises

@ add the instantiated conclusion to the proof context

if we guess wrong, proof probably fails, but no soundness issue
= no need to trust the reification procedure

L I S

Effectful programs as decision procedures

Effectful programs as decision procedures

Effectful programs as decision procedures

From logic to programs

important limitation of computations within the Why3 logic:
@ no arrays, loops, references, exceptions...
@ must prove termination with structurally decreasing argument

consequence: decision procedures are hard to implement and inefficient

idea: write decision procedures as regular, proved Why3 programs

L I SE e

Effectful programs as decision procedures

Interpreter

additional step of the reflection transformation: compute the results

new interpreter for WhyML programs

@ based on the intermediate language of Why3's extraction

@ simple, but part of the trusted computing base

L I SE)eE

Effectful programs as decision procedures

Example: systems of linear equalities

type expr = Term coeff int | Add expr expr | Cst coeff
type equality = (expr, expr)

let linear_decision (1: list equality) (g: equality) : bool
requires { valid_ctx 1 A valid_eq g }
ensures { forall y z. result = True — interp_ctx 1 gy z }
raises { Unknown — true }
= let m = Matrix.make ...
(* exceptions, loops, stide effects, mutable states... *)
match gauss_jordan m with
| Some r — check_combination 1 g r
| None — False
end

@ given a list 1 of valid equalities, is the equality g valid?
@ check if g is a linear combination of 1 by Gaussian elimination
@ proof by certificate: no need to prove Gaussian elimination correctness

@ generic: only requires coeff to provide partial field operations

L RS

Specialized coefficients for GMP goals

H: value rl i + (power radix i) * cl = value x i + value y i x1
Hil: res + radix * ¢ = 1x + 1y + ci X power radix i

the (symbolic) powers of radix need to be part of the scalar coefficients

type exp = Lit int | Var int | Plus exp exp | Minus exp | Sub exp exp
type rat = (int, int)
type coeff = (rat, exp)

function qginterp (q:rat) : real
= let (n,d) = q in from_int n /. from_int d

function interp_exp (e:exp) (y:vars) : int
= match e with
| Litn =+ n | Var v — y v
| Plus el e2 — interp_exp el y + interp_exp e2 y

end

function interp (t:coeff) (y:vars) : real
= let (q,e) = t in qinterp q *. pow radix (from_int (interp_exp e y))

L RS

Effectful programs as decision procedures

Assessment

user-supplied Why3 programs can be used as decision procedures

°
@ no need to know the internal workings of Why3

@ compositionality: existing procedures can be adapted and reused
°

minimal impact on the trusted computing base

GMP proof: ~ 1000 lines of assertions can be deleted

main limitation: still hard to debug when it doesn’t work

L RS

Effectful programs as decision procedures

Conclusion

main contributions:
o reflection framework (reification + interpreter)
@ a Why3 decision procedure for systems of linear equalities

@ much more automatic proofs for GMP algorithms

future work:
@ more decision procedures for GMP (inequalities, divisibility. . .)

@ improve user experience (what to do when proof fails?)

L TRV

	one
	Reimplementing GMP using Why3
	Computational reflection in Why3
	Effectful programs as decision procedures

