A Why3 framework for reflection proofs and its application to GMP's algorithms

Guillaume Melquiond¹ Raphaël Rieu-Helft^{2,1}

¹Inria ²TrustInSoft

July 15, 2018

Context, motivation, goals

goal: efficient and formally verified large-integer library

GMP:

- widely-used, high-performance library
- safety-critical
- tested, but hard to ensure good coverage (unlikely branches)
- correctness bugs have been found in the past

idea:

- formally verify GMP algorithms with Why3
- extract efficient C code

Tool: the Why3 platform

approach:

- implement GMP algorithms and their specifications in WhyML
- prove Why3-generated verification conditions
- extract to C

main challenge: how to keep proof effort manageable?

Reimplementing GMP using Why3

An example: comparison

```
large integer \equiv pointer to array of unsigned integers a_0 \dots a_{n-1} called limbs
\frac{a_{n}}{a_{0}\ldots a_{n-1}} = \sum_{i=0}^{n-1} a_{i}\beta^{i}
                                     usually \beta = 2^{64}
  let wmpn_cmp (x y: ptr uint64) (sz: int32): int32
   = let i = ref sz in
     try
       while !i > 1 do
          i := !i - 1:
          let lx = x[!i] in
          let ly = y[!i] in
          if lx \neq ly then
            if lx > ly
            then raise (Return32 1)
            else raise (Return32 (-1))
       done:
       0
     with Return32 r \rightarrow r
     end
```

(R. Rieu-Helft, C. Marché, G. Melquiond, *How to Get an Efficient yet Verified Arbitrary-Precision Integer Library*, VSTTE'17)

Example specification: long addition

specifications are defined in terms of the function $value(a, n) = \sum_{i=0}^{n-1} a_i \beta^i$

Why3 implementation

```
i := !i + 1;
done;
!c
```

Why3 implementation

```
while !i < sz do
  variant { sz - !i }
  invariant { 0 < !i < sz }
  invariant { value r !i + (power radix !i) * !c =
              value x !i + value y !i }
  invariant { 0 \leq !c \leq 1 }
  label StartLoop in
  lx := x[!i]:
  ly := y[!i];
  let res, c1 = add_with_carry !lx !ly !c in
  r[!i] \leftarrow res;
  assert { value r !i = (value r !i at StartLoop) };
  c := c1:
  value_tail r !i;
  value tail x !i:
  value_tail y !i;
  assert { value r (!i+1) + (power radix (!i+1)) * !c =
           value x (!i+1) + value y (!i+1)
           by ...
           so ... (* 10+ lines *) }:
  i := !i + 1:
done;
!c
```

Motivation

total proof effort (add, sub, mul, div, logical shifts) (VSTTE'17) :

 \sim 6000 lines of Why3 code

- $\bullet \sim 1500$ of programs
- ullet \sim 500 of specifications
- $\bullet\,\sim\,4000$ of proof cuts

This is too much work!

SMT solvers fail because of large proof contexts, nonlinear arithmetic... \Rightarrow many long assertions are needed even for some "easy" goals

```
Zooming in
```

```
assert { value r (!i+1) + (power radix (!i+1)) * !c =
      value x (!i+1) + value y (!i+1) };
```

Generated verification condition:

H:	value	r1 i + (power radix i) * c1 = value x i	+ value y	i $\times 1$
H1:	res +	radix * c = lx + ly + c1	imes power	radix i
H2:	value	r i = value r1 i		$\times 1$
H3:	value	<pre>x (i+1) = value x i + (power radix i) *</pre>	lx	$\times(-1)$
H4:	value	<pre>y (i+1) = value y i + (power radix i) *</pre>	ly	$\times(-1)$
H5:	value	<pre>r (i+1) = value r i + (power radix i) *</pre>	res	$\times 1$

g: value r (i+1) + power radix (i+1) * c = value x (i+1) + value y (i+1)

the goal is actually a linear combination of the hypotheses

Reimplementing GMP using Why3

2 Computational reflection in Why3

Computational reflection in Why3

Toy example: equality in a ring

goal: prove equalities such as M = M' with

$$\begin{split} \mathsf{M} &= & \mathsf{A}_{1,1}\mathsf{B}_{1,1} + \mathsf{A}_{1,2}\mathsf{B}_{2,1} \\ \mathsf{M}' &= & (\mathsf{A}_{1,1} + \mathsf{A}_{2,2}) \cdot (\mathsf{B}_{1,1} + \mathsf{B}_{2,2}) + \mathsf{A}_{2,2} \cdot (\mathsf{B}_{2,1} - \mathsf{B}_{1,1}) \\ &- & (\mathsf{A}_{1,1} + \mathsf{A}_{1,2}) \cdot \mathsf{B}_{2,2} + (\mathsf{A}_{1,2} - \mathsf{A}_{2,2}) \cdot (\mathsf{B}_{2,1} + \mathsf{B}_{2,2}) \end{split}$$

SMT solvers time out in practice idea: embed terms into the logical language of Why3

```
type t = Var int | Add t t | Mul t t | Sub t t

let rec function interp (x: t) (y: int \rightarrow a) : a =

match x with

| Var n \rightarrow y n

| Add x1 x2 \rightarrow (interp x1 y) + (interp x2 y)

| Mul x1 x2 \rightarrow (interp x1 y) * (interp x2 y)

| Sub x1 x2 \rightarrow (interp x1 y) - (interp x2 y)

end
```

Decision procedures

```
function eq_zero (x:t) : bool
= match x with
... (* purely functional code, structurally decreasing arguments *)
lemma zero_sub_eq:
forall x1 x2 y. eq_zero (Sub x1 x2) → interp x1 y = interp x2 y
```

eq_zero computes a normal form, but no need to prove (or define) that \Rightarrow this proof is very easy

to instantiate the lemma, we need to guess x1, x2, y such that

interp x1 y = M interp x2 y = M'

Reification

heuristic approach: invert zero_sub_eq and the body of interp

```
type t = Var int | Add t t | Mul t t | Sub t t
```

```
let rec function interp (x: t) (y: int \rightarrow a) : a =
    match x with
    | Var n \rightarrow y n
    | Add x1 x2 \rightarrow (interp x1 y) + (interp x2 y)
    | Mul x1 x2 \rightarrow (interp x1 y) * (interp x2 y)
    | Sub x1 x2 \rightarrow (interp x1 y) - (interp x2 y)
    end
  lemma zero_sub_eq:
    forall x1 x2 y. eq_zero (Sub x1 x2) \rightarrow interp x1 y = interp x2 y
 goal g: foo a + b = c * b
[foo a + b = c * b]
[foo a + b] = [c * b]
                                                        v 0 = foo a
Add [foo a] [b] = [c * b]
                                                        v 1 = b
Add (Var 0) (Var 1) = [c * b]
                                                        v 2 = c
Add (Var 0) (Var 1) = Mul [c] [b]
Add (Var 0) (Var 1) = Mul (Var 2) (Var 1)
```

Extension: reifying the proof context

```
function interp_eq (g:equality) (y:vars) (z:C.cvars) : bool
= match g with (g1, g2) → interp g1 y z = interp g2 y z end
function interp_ctx (l:list equality) (g:equality) (y:vars) (z:C.cvars) : bool
= match l with
  | Nil → interp_eq g y z (* goal *)
  | Cons h t → (interp_eq h y z) → (interp_ctx t g y z)
  end
```

- recognize implication and recursive call in the Cons branch
- one element of the list = one hypothesis in the proof context
- heuristic: match all possible hypotheses in the proof context against the left-hand side

Reflection as a Why3 transformation

```
lemma zero_sub_eq: forall x1 x2 y. eq_zero (Sub x1 x2) \rightarrow interp x1 y = interp x2 y
```

synopsis:

- guess appropriate values for parameters using the reification procedure
- ask the user to prove the premises
- add the instantiated conclusion to the proof context

if we guess wrong, proof probably fails, but no soundness issue \Rightarrow no need to trust the reification procedure

Effectful programs as decision procedures

From logic to programs

important limitation of computations within the Why3 logic:

- no arrays, loops, references, exceptions...
- must prove termination with structurally decreasing argument consequence: decision procedures are hard to implement and inefficient

idea: write decision procedures as regular, proved Why3 programs

```
Interpreter
```

additional step of the reflection transformation: compute the results

new interpreter for WhyML programs

- based on the intermediate language of Why3's extraction
- simple, but part of the trusted computing base

Example: systems of linear equalities

```
type expr = Term coeff int | Add expr expr | Cst coeff
type equality = (expr, expr)
```

```
let linear_decision (1: list equality) (g: equality) : bool
  requires { valid_ctx l ∧ valid_eq g }
  ensures { forall y z. result = True → interp_ctx l g y z }
  raises { Unknown → true }
= let m = Matrix.make ...
  ... (* exceptions, loops, side effects, mutable states... *)
  match gauss_jordan m with
    | Some r → check_combination l g r
    | None → False
  end
```

- given a list 1 of valid equalities, is the equality g valid?
- check if g is a linear combination of 1 by Gaussian elimination
- proof by certificate: no need to prove Gaussian elimination correctness
- generic: only requires coeff to provide partial field operations

Specialized coefficients for GMP goals

```
H: value r1 i + (power radix i) * c1 = value x i + value y i \times 1
H1: res + radix * c = lx + ly + c1 \times power radix i ...
```

the (symbolic) powers of radix need to be part of the scalar coefficients

```
type exp = Lit int | Var int | Plus exp exp | Minus exp | Sub exp exp
type rat = (int, int)
type coeff = (rat, exp)
function ginterp (q:rat) : real
```

```
= let (n,d) = q in from_int n /. from_int d
```

```
function interp_exp (e:exp) (y:vars) : int

= match e with

| Lit n \rightarrow n | Var v \rightarrow y v

| Plus e1 e2 \rightarrow interp_exp e1 y + interp_exp e2 y

...

end
```

```
function interp (t:coeff) (y:vars) : real
= let (q,e) = t in qinterp q *. pow radix (from_int (interp_exp e y))
```

Assessment

- user-supplied Why3 programs can be used as decision procedures
- no need to know the internal workings of Why3
- compositionality: existing procedures can be adapted and reused
- minimal impact on the trusted computing base

GMP proof: \sim 1000 lines of assertions can be deleted

main limitation: still hard to debug when it doesn't work

Conclusion

main contributions:

- reflection framework (reification + interpreter)
- a Why3 decision procedure for systems of linear equalities
- much more automatic proofs for GMP algorithms

future work:

- more decision procedures for GMP (inequalities, divisibility...)
- improve user experience (what to do when proof fails?)