
A Why3 framework for reflection proofs
and its application to GMP’s algorithms

Guillaume Melquiond1 Raphaël Rieu-Helft2,1

1Inria 2TrustInSoft

July 15, 2018

July 15, 2018 1 / 23

Context, motivation, goals

goal: efficient and formally verified large-integer library

GMP:
widely-used, high-performance library
safety-critical
tested, but hard to ensure good coverage (unlikely branches)
correctness bugs have been found in the past

idea:
1 formally verify GMP algorithms with Why3
2 extract efficient C code

July 15, 2018 2 / 23

Tool: the Why3 platform

file.mlw

Why3

Alt-Ergo

CVC4

Z3

etc.

file.ml file.c

approach:
implement GMP algorithms and
their specifications in WhyML
prove Why3-generated
verification conditions
extract to C

main challenge: how to keep proof
effort manageable?

July 15, 2018 3 / 23

Reimplementing GMP using Why3

Reimplementing GMP using Why3

July 15, 2018 4 / 23

Reimplementing GMP using Why3

An example: comparison
large integer ≡ pointer to array of unsigned integers a0 . . . an−1 called limbs

a0 . . . an−1 =
n−1∑
i=0

aiβ
i usually β = 264

let wmpn_cmp (x y: ptr uint64) (sz: int32): int32
= let i = ref sz in

try
while !i ≥ 1 do

i := !i - 1;
let lx = x[!i] in
let ly = y[!i] in
if lx 6= ly then

if lx > ly
then raise (Return32 1)
else raise (Return32 (-1))

done;
0

with Return32 r → r
end

(R. Rieu-Helft, C. Marché, G. Melquiond, How to Get an Efficient yet Verified

Arbitrary-Precision Integer Library, VSTTE’17)
July 15, 2018 5 / 23

Reimplementing GMP using Why3

Example specification: long addition

specifications are defined in terms of the function value(a, n) =
n−1∑
i=0

aiβ
i

(** ‘wmpn_add_n r x y sz‘ adds ‘(x, sz)‘ to ‘(y, sz)‘ and writes the
result in ‘(r, sz)‘. Returns carry, either 0 or 1.
Corresponds to ‘mpn_add_n‘. *)

let wmpn_add_n (r x y: ptr limb) (sz: int32) : limb
requires { valid x sz }
requires { valid y sz }
requires { valid r sz }
ensures { value r sz + (power radix sz) * result

= value x sz + value y sz }
ensures { 0 ≤ result ≤ 1 }
writes { r.data.elts }

July 15, 2018 6 / 23

Reimplementing GMP using Why3

Why3 implementation
while !i < sz do

invariant { 0 ≤ !i ≤ sz }
invariant { value r !i + (power radix !i) * !c =

value x !i + value y !i }
invariant { 0 ≤ !c ≤ 1 }

lx := x[!i];
ly := y[!i];
let res, c1 = add_with_carry !lx !ly !c in
r[!i] ← res;

c := c1;

i := !i + 1;
done;
!c

July 15, 2018 7 / 23

Reimplementing GMP using Why3

Why3 implementation
while !i < sz do

variant { sz - !i }
invariant { 0 ≤ !i ≤ sz }
invariant { value r !i + (power radix !i) * !c =

value x !i + value y !i }
invariant { 0 ≤ !c ≤ 1 }
label StartLoop in
lx := x[!i];
ly := y[!i];
let res, c1 = add_with_carry !lx !ly !c in
r[!i] ← res;
assert { value r !i = (value r !i at StartLoop) };
c := c1;
value_tail r !i;
value_tail x !i;
value_tail y !i;
assert { value r (!i+1) + (power radix (!i+1)) * !c =

value x (!i+1) + value y (!i+1)
by ...
so ...(* 10+ lines *) };

i := !i + 1;
done;
!c

July 15, 2018 7 / 23

Reimplementing GMP using Why3

Motivation

total proof effort (add, sub, mul, div, logical shifts) (VSTTE’17) :

∼ 6000 lines of Why3 code
∼ 1500 of programs
∼ 500 of specifications
∼ 4000 of proof cuts

This is too much work!

SMT solvers fail because of large proof contexts, nonlinear arithmetic...
⇒ many long assertions are needed even for some “easy” goals

July 15, 2018 8 / 23

Reimplementing GMP using Why3

Zooming in

assert { value r (!i+1) + (power radix (!i+1)) * !c =
value x (!i+1) + value y (!i+1) };

Generated verification condition:
H: value r1 i + (power radix i) * c1 = value x i + value y i ×1
H1: res + radix * c = lx + ly + c1 × power radix i
H2: value r i = value r1 i ×1
H3: value x (i+1) = value x i + (power radix i) * lx ×(−1)
H4: value y (i+1) = value y i + (power radix i) * ly ×(−1)
H5: value r (i+1) = value r i + (power radix i) * res ×1

g: value r (i+1) + power radix (i+1) * c = value x (i+1) + value y (i+1)

the goal is actually a linear combination of the hypotheses

July 15, 2018 9 / 23

1 Reimplementing GMP using Why3

2 Computational reflection in Why3

3 Effectful programs as decision procedures

July 15, 2018 10 / 23

Computational reflection in Why3

Computational reflection in Why3

July 15, 2018 11 / 23

Computational reflection in Why3

Toy example: equality in a ring

goal: prove equalities such as M = M′ with

M = A1,1B1,1 + A1,2B2,1

M′ = (A1,1 + A2,2) · (B1,1 + B2,2) + A2,2 · (B2,1 − B1,1)

− (A1,1 + A1,2) · B2,2 + (A1,2 − A2,2) · (B2,1 + B2,2)

SMT solvers time out in practice
idea: embed terms into the logical language of Why3

type t = Var int | Add t t | Mul t t | Sub t t

let rec function interp (x: t) (y: int → a) : a =
match x with
| Var n → y n
| Add x1 x2 → (interp x1 y) + (interp x2 y)
| Mul x1 x2 → (interp x1 y) * (interp x2 y)
| Sub x1 x2 → (interp x1 y) - (interp x2 y)
end

July 15, 2018 12 / 23

Computational reflection in Why3

Decision procedures

function eq_zero (x:t) : bool
= match x with

... (* purely functional code, structurally decreasing arguments *)

lemma zero_sub_eq:
forall x1 x2 y. eq_zero (Sub x1 x2) → interp x1 y = interp x2 y

eq_zero computes a normal form, but no need to prove (or define) that
⇒ this proof is very easy

to instantiate the lemma, we need to guess x1, x2, y such that

interp x1 y = M interp x2 y = M′

July 15, 2018 13 / 23

Computational reflection in Why3

Reification
heuristic approach: invert zero_sub_eq and the body of interp

type t = Var int | Add t t | Mul t t | Sub t t

let rec function interp (x: t) (y: int → a) : a =
match x with
| Var n → y n
| Add x1 x2 → (interp x1 y) + (interp x2 y)
| Mul x1 x2 → (interp x1 y) * (interp x2 y)
| Sub x1 x2 → (interp x1 y) - (interp x2 y)
end

lemma zero_sub_eq:
forall x1 x2 y. eq_zero (Sub x1 x2) → interp x1 y = interp x2 y

goal g: foo a + b = c * b

[foo a + b = c * b]
[foo a + b] = [c * b]
Add [foo a] [b] = [c * b]
Add (Var 0) (Var 1) = [c * b]
Add (Var 0) (Var 1) = Mul [c] [b]
Add (Var 0) (Var 1) = Mul (Var 2) (Var 1)

y 0 = foo a
y 1 = b
y 2 = c

July 15, 2018 14 / 23

Computational reflection in Why3

Extension: reifying the proof context

function interp_eq (g:equality) (y:vars) (z:C.cvars) : bool
= match g with (g1, g2) → interp g1 y z = interp g2 y z end

function interp_ctx (l:list equality) (g:equality) (y:vars) (z:C.cvars) : bool
= match l with

| Nil → interp_eq g y z (* goal *)
| Cons h t → (interp_eq h y z) → (interp_ctx t g y z)
end

recognize implication and recursive call in the Cons branch
one element of the list = one hypothesis in the proof context
heuristic: match all possible hypotheses in the proof context against
the left-hand side

July 15, 2018 15 / 23

Computational reflection in Why3

Reflection as a Why3 transformation

lemma zero_sub_eq:
forall x1 x2 y. eq_zero (Sub x1 x2) → interp x1 y = interp x2 y

synopsis:
guess appropriate values for parameters using the reification procedure
ask the user to prove the premises
add the instantiated conclusion to the proof context

if we guess wrong, proof probably fails, but no soundness issue
⇒ no need to trust the reification procedure

July 15, 2018 16 / 23

Effectful programs as decision procedures

Effectful programs as decision procedures

July 15, 2018 17 / 23

Effectful programs as decision procedures

From logic to programs

important limitation of computations within the Why3 logic:
no arrays, loops, references, exceptions...
must prove termination with structurally decreasing argument

consequence: decision procedures are hard to implement and inefficient

idea: write decision procedures as regular, proved Why3 programs

July 15, 2018 18 / 23

Effectful programs as decision procedures

Interpreter

additional step of the reflection transformation: compute the results

new interpreter for WhyML programs

based on the intermediate language of Why3’s extraction
simple, but part of the trusted computing base

July 15, 2018 19 / 23

Effectful programs as decision procedures

Example: systems of linear equalities
type expr = Term coeff int | Add expr expr | Cst coeff
type equality = (expr, expr)

let linear_decision (l: list equality) (g: equality) : bool
requires { valid_ctx l ∧ valid_eq g }
ensures { forall y z. result = True → interp_ctx l g y z }
raises { Unknown → true }

= let m = Matrix.make ...
... (* exceptions, loops, side effects, mutable states... *)
match gauss_jordan m with

| Some r → check_combination l g r
| None → False

end

given a list l of valid equalities, is the equality g valid?
check if g is a linear combination of l by Gaussian elimination
proof by certificate: no need to prove Gaussian elimination correctness
generic: only requires coeff to provide partial field operations

July 15, 2018 20 / 23

Effectful programs as decision procedures

Specialized coefficients for GMP goals
H: value r1 i + (power radix i) * c1 = value x i + value y i ×1
H1: res + radix * c = lx + ly + c1 × power radix i
...

the (symbolic) powers of radix need to be part of the scalar coefficients
type exp = Lit int | Var int | Plus exp exp | Minus exp | Sub exp exp
type rat = (int, int)
type coeff = (rat, exp)

function qinterp (q:rat) : real
= let (n,d) = q in from_int n /. from_int d

function interp_exp (e:exp) (y:vars) : int
= match e with

| Lit n → n | Var v → y v
| Plus e1 e2 → interp_exp e1 y + interp_exp e2 y
...
end

function interp (t:coeff) (y:vars) : real
= let (q,e) = t in qinterp q *. pow radix (from_int (interp_exp e y))

July 15, 2018 21 / 23

Effectful programs as decision procedures

Assessment

user-supplied Why3 programs can be used as decision procedures
no need to know the internal workings of Why3
compositionality: existing procedures can be adapted and reused
minimal impact on the trusted computing base

GMP proof: ∼ 1000 lines of assertions can be deleted

main limitation: still hard to debug when it doesn’t work

July 15, 2018 22 / 23

Effectful programs as decision procedures

Conclusion

main contributions:
reflection framework (reification + interpreter)
a Why3 decision procedure for systems of linear equalities
much more automatic proofs for GMP algorithms

future work:
more decision procedures for GMP (inequalities, divisibility. . .)
improve user experience (what to do when proof fails?)

July 15, 2018 23 / 23

	one
	Reimplementing GMP using Why3
	Computational reflection in Why3
	Effectful programs as decision procedures

