Detecting Strict Aliasing Violations in the Wild

Pascal Cuoq!, Loic Runarvot!, and Alexander Cherepanov?3
! TrustInSoft
2 Openwall
3 National Research University Higher School of Economics

Abstract. Type-based alias analyses allow C compilers to infer that
memory locations of distinct types do not alias. Idiomatic reliance on
pointers on the one hand, and separate compilation on the other hand,
together make it impossible to get this aliasing information any other
way. As a consequence, most modern optimizing C compilers implement
some sort of type-based alias analysis. Unfortunately, pointer conver-
sions, another pervasive idiom to achieve code reuse in C, can interact
badly with type-based alias analyses. This article investigate the fine line
between the allowable uses of low-level constructs (pointer conversions,
unions) that should never cause the predictions of a standard-compliant
type-based alias analysis to be wrong, and the dangerous uses that can
result in bugs in the generated binary. A sound and precise analyzer for
strict aliasing violations is briefly described.

Keywords: strict aliasing, type-based alias analysis, C, static analysis

1 Introduction

Until approximately 1999[11,10], the static analysis literature tended towards
ignoring low-level aspects of C programs completely. Sound analyzers (either
actual prototypes or hypothetical implementations of the entirety of the analyzer
described in an article) would not deal with low-level programming idioms that
are, for better or for worse, present in C code as it exists and as it gets written.
An example, seen in safety-critical embedded code, is to take the address of the
first member of a struct that contains only floats, and proceed to initialize the
struct via a loop, through pointer arithmetic, as if it were an array. Rejecting this
construct outright means giving up on making the analyzer useful for this kind
of code. Alternately, the analyzer might maintain soundness by becoming very
imprecise in presence of such low-level constructs. This also makes the analyzer
unusable in practice. As sound static analysis gained industrial adoption as a
useful tool for the certification of safety-critical embedded software, the design
choice of accepting the low-level construct and handling it precisely became more
common[9].

Attempts to handle low-level constructs with precision in sound static analyz-
ers sometimes works at cross-purposes with increasingly sophisticated optimiza-

tions, based on undefined behavior?, in C compilers. In presence of constructs

4 See http://blog.regehr.org/archives/213

2 Pascal Cuoq, Loic Runarvot, and Alexander Cherepanov

that invoke undefined behavior for some or all inputs, compilers are allowed to
generate binary code:

— without any diagnostic at compile-time,

— that does not raise any exception at run-time,

— and only works as intended for inputs that do not invoke undefined behavior—
this can be the empty set in the case of intentional reliance on undefined
behavior by the developer.

Optimizations based on undefined behavior are useful®. But these optimiza-
tions can have the unfortunate effect of making static analyzers intended to be
sound unsound in practice. To be fair, the problem, as long as one is aware of it,
can easily be circumvented by disabling the optimization, aligning the seman-
tics of the compiler and the analyzer. GCC understands -fwrapv for wrapping
signed arithmetic overflows, and -fno-strict-aliasing for no type-based alias
analysis. Awareness is the only difficulty in this plan. For instance, legacy C
libraries that have worked well for 25 years and are now deployed everywhere
may violate the rules in a way that new versions of C compilers written in 2017
suddenly become sophisticated enough to take advantage of.

This article is concerned with the optimization named -fstrict-aliasing
in GCC and Clang, and with guaranteeing that programs do not invoke the
kind of undefined behavior that allows this optimization to change the behavior
of the program from what was intended by the developer. With funding from
the Linux Foundation’s Core Infrastructure Initiative, we are building a static
analyzer to detect violations of strict aliasing, so that legacy C libraries at the
heart of the Internet can be diagnosed with strict aliasing violations, and fixed
before the problem becomes urgent. This is work in progress.

2 Strict Aliasing in the C Standards

When the C programming language was standardized in 1980s the Committee
considered the question whether an object may be accessed by an lvalue of a type
different from the declared type of the object. This would hamper optimization
and, thus, “[t}he Committee has decided that such dubious possibilities need not
be allowed for”®. However, certain prevalent exceptions were recognized: types
differently qualified and with different signedness may alias and any type may
be accessed as a character type. Interaction between aggregates (and unions)
and their members was also accounted for. The resulting rules were included in
C89 and got known as “strict aliasing rules”.

In 1997, it was pointed out” that the text in the C89 standard does not cover
the case of allocated objects which do not have a declared type. The standard
was corrected and the strict aliasing rules in C99 have the following form:

5 See https://gist.github.com/rygorous/e0f055bfb74e3d5f0af20690759de5a7

5 C89 Rationale, http://std.dkuug.dk/jtcl/sc22/wgld/docs/rationale/c89/rati
onale.ps.gz

" http://open-std.org/jtcl/sc22/ugld/www/docs/n640. ps

Detecting Strict Aliasing Violations in the Wild 3

[C99, 6.5:6] The effective type of an object for an access to its stored
value is the declared type of the object, if any.”™) If a value is stored into
an object having no declared type through an lvalue having a type that
is not a character type, then the type of the lvalue becomes the effective
type of the object for that access and for subsequent accesses that do
not modify the stored value. If a value is copied into an object having
no declared type using memcpy or memmove, or is copied as an array
of character type, then the effective type of the modified object for that
access and for subsequent accesses that do not modify the value is the
effective type of the object from which the value is copied, if it has one.
For all other accesses to an object having no declared type, the effective
type of the object is simply the type of the lvalue used for the access.

[C99, 6.5:7] An object shall have its stored value accessed only by an

lvalue expression that has one of the following types:”®

— a type compatible with the effective type of the object,

— a qualified version of a type compatible with the effective type of the
object,

— a type that is the signed or unsigned type corresponding to the ef-
fective type of the object,

— atype that is the signed or unsigned type corresponding to a qualified
version of the effective type of the object,

— an aggregate or union type that includes one of the aforementioned
types among its members (including, recursively, a member of a sub-
aggregate or contained union), or

— a character type.

75) Allocated objects have no declared type.
76) The intent of this list is to specify those circumstances in which an
object may or may not be aliased.

There were no changes in the text in C11 except for renumbering footnotes.

The rules are symmetric with regard to signedness of types but not to qual-
ified /unqualified versions.

The rules are quite clear for objects declared with one of the basic types.
Everything more complex poses some kind of problems.

The natural aliasing between aggregates (and unions) and their members is
permitted by the fifth item in C99, 6.5:7, but the formulation is quite sloppy.
The problem was pointed out® at least in 1997, a later discussion can be found
in defect reports 1409° and 1520'°. A shared understanding of the intended
meaning seems to exist, although nobody has found yet a fixed wording.

Unions have members of different types which naturally alias each other.
Possibility of uncontrolled access to these members would undermine the idea of

8 http://open-std.org/jtcl/sc22/wgl4/3406
9 http://open-std.org/jtcl/sc22/wgl4/wuw/docs/n1409 . htm
0 http://open-std.org/jtcl/sc22/wgld/www/docs/n1520 . htm

4 Pascal Cuoq, Loic Runarvot, and Alexander Cherepanov

strict aliasing. Thus, we have to conclude that strict aliasing rules govern the use
of members of unions. But there is an exception—it’s always permitted to read
any member of a union by the . operator (and the -> operator). The relevant
part of the C99 standard is:

[C99, 6.5.2.3:3] A postfix expression followed by the . operator and an
identifier designates a member of a structure or union object. The value
is that of the named member,?) and is an lvalue if the first expression
is an lvalue.

82) If the member used to access[’read” in C11] the contents of a union
object is not the same as the member last used to store a value in the
object, the appropriate part of the object representation of the value is
reinterpreted as an object representation in the new type as described
in 6.2.6 (a process sometimes called ”type punning”). This might be a
trap representation.

3 Examples

This section lists examples of simple functions where a memory access can be
optimized, or not, depending on the interpretation of the strict aliasing rules.
On the right-hand side of each example, the assembly code generated by an
optimizing compiler is shown!!. While reading the examples, bear in mind that
in the x86-64 calling convention, %rax or its 32-bit subregister %eax is used for
the return value when it is an integer or a pointer. %rdi or %edi holds the
function’s first integer/pointer argument, and %rsi or %esi holds the second
one. The result, when a float, is instead placed in the floating-point register
%xmmO, and %xmmO also holds the function’s first float argument if any.

exl:

int ex1(int *p, float *q) { movl $1, (%rdi)

*p = 1;
*p - 9. 0f: movl $1, Y%eax
q= 2P movl $0x40000000, (%rsi)
return *p; ret
}
ui:

unsigned ui(unsigned *p, int *q) { movl $1, (%rdi)

*p = 1;

*P ~ ;’ movl $2, (%rsi)
q : movl (%rdi), %eax
return *p;

ret

}

" https://godbolt.org/g/ggZzqo

Detecting Strict Aliasing Violations in the Wild 5

111:

long 111(long *p, long long *q) { movq $1, (Yrdi)

*p = 1;
*P = 9. movl $1, %eax
4 ’ movq $2, (Y%rsi)
return *p; ret
}
int x;
pPp:

unsigned y;

int *pp(int **p, unsigned **q) { movg $x, (%rdi)

movl $x, %eax

:z ; zi’ movq $y, (%rsi)
’ ret
return *p;
}
typedef int (*f1) (int);
typedef int (*f2) (float); pf:

int foo(int);
int bar(float);
f1 pf(f1 *p, £2 *q) {

movq $foo, (Yrdi)
movl $foo, %eax
movq $bar, (%rsi)

*p = foo;
+q = bar; ret
return *p;

}

struct s { int a; };

struct t { int b; }; stl:

int stil(struct s *p, struct t *q) { movl $1, (Yrdi)
p->a = 1; movl $1, Jeax
q->b = 2; movl $2, (Yrsi)
return p->a; ret

}

struct s { int a; };

struct t { int b; };

int st2(struct s *p, struct t *q) { s
int *pa = & (p—>a);
int *gb = & (g->b);

t2:

movl $1, (%rdi)
movl $2, (Y%rsi)
movl (%rdi), %eax

*pa = 1; ret
*gb = 2;
return *pa;

}
The assembly code shown was produced by GCC 6.2.0

For each of the example functions in this section, the question is whether it behaves
the way a programmer with a naive view of memory use in C would expect, when
somehow invoked with aliasing pointers as arguments, regardless of how the aliasing
has been created at the call-site. Reading the assembly generated for one example by
a particular compiler is faster and less distracting that building a caller that creates
the aliasing condition.

6 Pascal Cuoq, Loic Runarvot, and Alexander Cherepanov

For the sake of completeness, here is what a problematic caller would look like for
the first example ex1:

int main(int c, char *v[]) {
static_assert(sizeof (int) == sizeof(float),
"Only for 32-bit int and IEEE 754 binary32 float");
void *p = malloc(sizeof(float));
ex1((int *)p, (float *)p);
}

The main function here is creating the conditions for ex1 to misbehave, and, in
a “code smell” sense, it can be said to be where the programmer’s error lay. Experi-
enced programmers familiar with strict aliasing rules in particular would worry about
the conversions of the same p to two distinct pointer types. Regardless, it is the code
inside function ex1 that, when invoked in this context, violates the rules. Any reason-
ably precise analyzer can only hope to diagnose the problem there. The two pointer
conversions in the above main are not invalid, and would constitute a valid program
if put together with a different implementation for the function ex1. We do not show
additional examples of calling contexts precisely in order to avoid wrongly thinking of
the calling context as the place where the strict aliasing issue is located. Warning about
pointer conversions is, essentially, what GCC’s -Wstrict-aliasing option does, and
this is not satisfactory because, to be blunt, pointer conversion is the sole code reuse
mechanism available in the C language, and as such it is used as much as necessary,
both in patterns that ends up violating strict aliasing rules and in patterns that do
not. This is especially true of legacy code written in the 1990s, a time at which C was
used to program high-level concepts for which a high-level language would hopefully
be the obvious choice for new implementations today.

The example ex1 shows the simplest, least controversial form of strict aliasing
optimization. The only C developers who disagree with it reject the concept of type-
based alias inference as a whole.

The example ui is not expected to be optimized, as C11 makes allowances for
accessing an unsigned effective type with an int lvalue and vice-versa. In contrast, even
when the standard integer types int and long (or respectively long and long long)
happen to have the same width, compilers can assume that an lvalue of one type is not
used to access an object with the other, as the standard allows them to—the types int
and long are not compatible even when they have the same width.

In the example pp, GCC 6.2.0 (but none of the Clang versions available at the
time of this writing) correctly uses the fact that the types int* and unsigned* are not
compatible with each other to optimize the returned value into &x. Similarly, in example
pf, GCC version 6.2.0 takes advantage of the incompatibility of the types “pointer to
function taking an int and returning an int” and “pointer to function taking a float
and returning an int” to optimize the returned value to the address of foo.

An example similar to st1 was a crucial part of an internal committee discussion
about the notion of type compatibility as early as 1995'2. This example has popped
again occasionally, for instance in GCC’s mailing list in 2010*® and later in Section 4.1.2

12 Example y.c in http://std.dkuug.dk/jtcl/sc22/wgl4/docs/c9x/misc/tag-comp
at.txt.gz
3 https://gcc.gnu.org/ml/gcc/2010-01/msg00013 . html

Detecting Strict Aliasing Violations in the Wild 7

of “C memory object and value semantics: the space of de facto and ISO standards”!?.

GCC versions 4.4.7 and 4.5.3 optimize st2 identically to st1, but later GCC versions
do not. It is not clear whether this change is incidental or results from a decision to limit
the scope of strict aliasing optimizations: the reasoning that justifies the optimization
of st1in GCC justifies the optimization of st2, too. A consequence for any sound static
detector of strict aliasing violations is that the information of “pointed struct member”
must be propagated associated to pa and gb in order to detect that the harmless-looking
assignments *pa = 1, *gb = 2 and retrieval return *pa; violate GCC’s memory model
because of previous statements.

arl:

int ari(int (xp)[8], int (xq)[81) { movl $1. 12(%rdi)

E:p; EE j ;’ movl $1, %eax
a oe movl $2, 16(Yrsi)
return (*p) [3]; ret
}
int ar2(int c, int (*p)[8], ar2:

int (xq) [8]) {
int z = 0;
if (2 < c && c < 4) {

xorl %eax, %eax
cmpl $3, ‘edi

i L
(xp) [c+z] = 1; Je
Q) [4] = 2; Top xer

return (*P) [c1; movl $1, 12(%rsi)

¥ movl $1, %eax
else 0
movl $2, 16(%rdx)
return O;
retll
}
ar3:

int ar3(int (*p)[8], int (*q) [7]) { movl $1, 12(%rdi)

E:P; Eg% j é: movl $2, 12(%rsi)
q T4 movl 12(%rdi), %eax
return (*p) [3]; ret
}
enum el { A = 0 };
enum e2 { B = 1 };
ex1l_enum:

int exl_enum(enum el *p, enum e2 *q) movl $0, (%rdi)

{ o = xorl %eax, %eax
p ’ movl $1, (Yrsi)
*q = B; ret
return *p;

}

' https://www.cl.cam.ac.uk/~pes20/cerberus/notes30.pdf, Draft, Revision 1571,
2016-03-17

8 Pascal Cuoq, Loic Runarvot, and Alexander Cherepanov

enum el { A };
unsigned ex2_enum(unsigned *p, enum el *q) ex2_enum:

{ movl $1, (%rdi)
*p = 1; movl $1, %eax
*q = A; movl $0, (Yrsi)
return *p; ret

}

The assembly code shown was produced by GCC 6.2.0

The same optimization that GCC exhibits when compiling the function st1, GCC
6.2.0 also applies to array types in example arl, where index 3 of an array of 8 ints is
assumed not to alias with index 4 of an array of 8 ints. Clang versions available as of
this writing do not optimize ar1.

The example ar2 shows that there are no a priori bounds to the ingenuity of
compiler in order to infer that the indexes being accessed are necessarily different. As
a consequence, a sound and precise static analyzer cannot limit itself to constant array
indexes.

The example ar3, where the array types pointed by the arguments differ in size,
seems easier to optimize than ari1, but is surprisingly optimized by neither Clang nor
GCC as of this writing. Optimizing arl already constrains the developer never to view
a large array as a superposition of overlapping smaller arrays, so GCC could optimize
ar3. Showing this example to GCC developers is taking them in the direction of not
optimizing ar1 instead!5.

In C, enum types have an underlying integer type, chosen by the compiler according
to the set of values to hold by the enum. GCC chooses unsigned int for an enum
destined to contain only the values 0 and 1 or 0. Despite these two enum types being
compatible with unsigned int, GCC 6.2.0 optimizes programs as if a memory location
of effective type one such enum could not be modified by an access to unsigned int, or
an access to another such enum. We think this is a bug!®, but meanwhile, it is possible to
detect that a program might be miscompiled by GCC 6.2.0 by treating in the analyzer
an enum type based on unsigned int as if it were incompatible with unsigned int
and other enum types based on unsigned int.

union u { int a; float b; };

fr:
int fr(float £) { Irrflovd %xmm0, %eax
unionut = { .b=£f }; ’ v
retq

return t.a;

}

/* q is really a pointer to a union u */

1:
int ul(int *p, void *q) { v

movl $1, (%rdi)

*p = 13 Vo
1 $1 41824, (%
+&((union u F)Q->b = 2; movl $ 07?7 8 (%rsi)
movl $1, %eax
return *p;

} retq

15 https://gcc.gnu.org/ml/gcc/2016-11/msg00111 . html
16 See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=71598

Detecting Strict Aliasing Violations in the Wild 9

int u2(int *p, union u *q) { u2:
*p = 1; movl $1, (%rdi)
q—>b = 0.1; movl $1036831949, (%rsi)
return *p; movl $1, %eax
} retq
void *mem(void); u3:
pushq %rbx
int u3() { callq mem
union u *pl = mem(); movq %rax, %rbx
union u *p2 = mem(); callqg mem
float *fp = &p2->b; movl $1, (Y%rbx)
pl->a = 1; movl $1077936128, (%rax)
*fp = 3.0; movl $1, %eax
return pl->a; popq %rbx
} retq
ué:
int u4(void) { pushq %rbx
union u *pl = mem(); callqg mem
union u *p2 = mem(); movq %rax, %rbx
int* ip = &pl->a; callg mem
*ip = 1; movl $1, (%rbx)
p2->b = 3.0; movl $1077936128, (%rax)
return *ip; movl $1, %eax
} popq %rbx
retq
ub:
int ub(void) { pushq %rbx
. callg mem
union u *pl = mem(Q); s 0
union u *p2 = mem(); movq %rax, %rbx
pi->a = 1; callq mem)
p2-5b = 3.0; movl $1, (%rbx)
’ movl $1077936128, (%rax)
return pl->a; 0
movl $1, %eax
} o
popq %rbx
retq

The assembly code shown was produced by Clang 3.9.0

The interactions of unions with type-punning and type-based alias analyses have
caused enormous amounts of discussion, starting with a C99 standard that initially
implied that reading from a union member other than the one used to setting the
value of the union produced unspecified results (6.5.2.3:3) and a defect report about a
regression of the type-punning powers of union with respect to C89'7. Type-punning
through unions remains ambiguously described in the C11 standard, and compilers
that want to take advantage of type-based alias analyses for optimizations need to

17 DR283, http://www.open-std.org/jtcl/sc22/ugld/www/docs/dr_283.htm

10 Pascal Cuoq, Loic Runarvot, and Alexander Cherepanov

define their own rules'®, and convey them to the developer, which they do not always
do clearly.

One extreme example of union use for type-punning is the function fr to convert a
float to its representation as an int. This function is compiled to the intended binary
code by all the compilers we tried. At the other end of the spectrum, the very function
ex1 that we used as first example can be an example of type-punning through unions
when it is invoked in the following context:

int main(int c, char *v[]) {
union { float f; int i; } u;
ex1(&u.i, &u.f);

}

Obviously, compilers do not want to compile the function ex1 cautiously just be-
cause any other compilation unit might invoke it with the addresses of distinct members
of a same union. Between these two extremes exists a limit of what a compiler defines
as reasonable use of a union for type-punning. Only programs within the limit are
guaranteed to be translated to code that behaves as intended. All three of GCC, ICC
and Clang fit in this general framework, but with different limits between reasonable
and unreasonable uses of union for type-punning. GCC documents its expectations
comparatively well'?, and sticks to what it documents: from the documentation, we
expect functions ul through u5 not to be optimized by GCC 6.2.0, and indeed, they
are not. Clang does not document what usages of unions it deems acceptable that we
could find. All the examples ul through u5 are optimized, implying that perhaps the
only acceptable use of a union for type-punning recognized by Clang is that of a vari-
able accessed directly, without any pointer dereference being involved. ICC appears to
adopt a middle-ground, by optimizing functions u3 and u4, but not u5.

4 Detecting strict aliasing violations

In this section we sketch out the functioning principles of a static analyzer for detecting
strict aliasing violations. The analyzer is a forward abstract interpreter [2] that assumes
that the values of expressions are computed at the same time as the effective types, or
have been computed and saved in a usable form[4]. The analyzer propagates “memory
states”, starting with the entry point of the program, until a fixpoint has been reached.
In this case, a “memory state” assigns possible effective types to each bit of memory.
The bit-level memory model is necessary in order to handle low-level constructs such
as unions and pointer conversions, when they are used in accordance to strict aliasing
rules.

The lattice used for each memory bit is the lattice of sets of effective types, ordered
by inclusion (the power set lattice). The empty set of effective types is the least element.

18 See for instance https://gcc.gnu.org/bugzilla/show_bug.cgi?id=65892#c9 or
the words “GCC doesn’t implement C99 aliasing as written in the standard re-
garding unions. We don’t do so because we determined that this can’t possibly have
been the intent of the standard as it makes type-based aliasing relatively useless” in
https://gcc.gnu.org/ml/gcc/2010-01/msg00263 . html

19 Documentation at https://gcc.gnu.org/onlinedocs/gec-6.2.0/gecc/Optimize-0
ptions.html

Detecting Strict Aliasing Violations in the Wild 11

It would technically not be necessary to keep information about all the possible effective
types an object can have during the analysis. As soon as two sufficiently distant effective
types are possible effective types for an object, there exists no declared type, compatible
with both, with which this object can be accessed without a warning. In other words, it
would not lead to a loss of precision to simplify the abstract domain used by identifying
with the greatest element all sets containing at least two incompatible effective types.
Our implementation avoids making all these sets of distant types the same in order to
improve the usefulness of warning messages. In particular, the attitude of the analyzer’s
user towards the message “there may be a violation here because this int lvalue is used
to access some unknown effective type” may be “I see why the analyzer is imprecise
here, this is a false positive”. The same user, provided with the better warning message
“there may be a violation here because this int lvalue is used to access effective types
long and float” may be “I see that the analyzer is imprecise here when it predicts
that a float can be accessed, this is a false positive; but accessing a long can happen
and is a genuine strict aliasing bug”.

4.1 Effective Types

We describe the grammar of effective types using an OCaml-like notation.

type ival = ...

type integer_type =
| Bool
| Char | SignedChar | UnsignedChar
| Short | UnsignedShort
| Int | UnsignedInt
| Long | UnsignedLong
| LongLong | UnsignedLongLong

type float_type = Float | Double | LongDouble

type function_type =
{ return_type : simple_type;
formals : simple_type list }

type simple_type =
| Structure of structure
| StructureField of field * simple_type
| Array of simple_type * expr (* size *)
| ArrayElement of simple_type
* expr (* declared size for array *)
* ival (* set of actual values for the index *)
Union of union_t
Enum of enum_t
IntegerType of integer_type
FloatType of float_type
FunctionType of function_type
VariadicFunctionType of function_type
PointerType of simple_type

12 Pascal Cuoq, Loic Runarvot, and Alexander Cherepanov

| FirstAccessType
| VoidType
| MayAlias

Listing 1.1. Effective Types

The effective types used by the analyzer unsurprisingly resemble the static types fa-
miliar to the C programmer. Below are the most notable departures from the grammar
of static types.

An effective type can be “member m of ...”, (resp. “array element at index ... of
array ...”). This is not the same effective type as the type of the struct member m
(resp. the type of elements of the array). In order to handle example functions st1i,
st2, arl, ..., all the available information about the location of the subobject inside
its containing objects must be memorized in the effective type.

The FirstAccessType constructor indicates that the effective type will be that of
the lvalue used for reading until some effective type is written, following C11 6.5:6.
The effective type FirstAccessType is used for the contents of memory blocks allo-
cated through calloc, as well as for contents written by read, fread, memset, ... This
constructor is not necessary for the contents of a block allocated through malloc, be-
cause in this case the contents of the allocated block are uninitialized (“indeterminate”
in C standard parlance). Reads of uninitialized dynamically allocated memory can be
assumed not to happen in a defined execution, and any such reads that can happen
in the conditions of the analysis should have been warned about by the companion
value analysis. Since the value analysis already warns about such uses of dynamically
allocated memory, the allocated block should rather be set to bottom (the empty set
of effective types) for maximum accuracy.

The MayAlias constructor corresponds to the type attribute __may_alias__ pro-
vided by the GCC?® and Clang compilers to inform the optimizer that lvalues of a
certain type are expected to be used to access memory of a different effective type.

The possibility that the types in stdint.h are mapped to “extended integer types”
(in the sense of the C11 clause 6.2.5:4) can be taken into account by adding as many
constructors as necessary to integer_type. This is particularly relevant for the types
int8_t and uint8_t because a 8-bit extended integer type that these would have been
defined as aliases of would not need to benefit from the exception for “character types”
in 6.5:7°".

Note that the effective types “member m of type int of . ..” and “int” are unordered.
It may initially seem that the latter should be included in the former, but not doing
so allows to distinguish the case of a pointer that can only point to a certain struct
member m of type int from the case of a pointer that may point to a struct member
m of type int or to an int variable, say, depending on the execution path that has
been followed.

4.2 Notable Analysis Rules and Checks

Compared to, say, a more traditional value analysis, the followed aspects of the strict
aliasing violation analysis deserve mention:

20 https://gec.gnu.org/onlinedocs/gcc-4.0.2/gcc/Type-Attributes.html
2! See discussion at https://gcc.gnu.org/bugzilla/show_bug.cgi?id=66110

Detecting Strict Aliasing Violations in the Wild 13

— When an lvalue read access occurs in an expression being evaluated, the type of
the lvalue is checked against the effective type contained by the memory model
for the location being accessed. This is the check that detects a problem in the
program int x = 1; 0.0f + *(float*)&x; and also in the program
void *p = malloc(4); *(int*)p = 1; 0.0f + *x(float*)p;

— Upon assignment to an lvalue, if the location designated by the lvalue being as-
signed is a variable or a subobject of a variable, then the static type of the lvalue is
checked against the type of the variable. This is the check that detects a problem
in the program int x; *(float*)&x = 1.0f;.

— Union types are handled specially only in the case of an assignment directly to or
a read directly from a variable. Outside these cases, union types are ignored: the
effective types have to match as if there was no union. This is intended to catch
the cases where Clang might optimize despite the union type.

4.3 A short example

int x;
FILE *stream = ...;
void *p = malloc(sizeof(int));

if (fread(p, sizeof(int), 1, stream) == 1)
x = *(int *)p;

else
/x ... x/

After the third line of the example above, the allocated object pointed by p has
no effective type. Assuming the call to fread succeeds, it sets the effective type of
that memory zone to FirstAccessType. The pointed block having the effective type
FirstAccessType results in the read access *(int *)p succeeding. Since the effective
type of the memory zone pointed by p is FirstAccessType, the effective type of the
expression *(int *)p is determined by the type of the lvalue, and thus automatically
matches it: IntegerType (Int).

5 Analyzing legacy C libraries for strict aliasing
violations

The analysis summarized in Sec. 4 is implemented as a Frama-C plug-in[3]. It works
best when applied on definite inputs. In these conditions, the value analysis plug-in[1]
avoids false positives, and builds a result graph[4] that contains all the information
that has been inferred about the execution of the program, so that the analyzers
exploiting these results are not limited by any loss of information about the order in
which program variables take their values.

Finally, the strict aliasing violation analysis is itself designed to assign exactly
one effective type to each memory location, avoiding imprecisions and the resulting
false positives, for programs applied to definite inputs resulting in bounded execu-
tion. “Subjective false positive” may exist, where compilers do not currently exploit
a strict-aliasing-violating pattern, and it turns out to be impossible to convince the
maintainer of the library that they are doing something wrong. As long as the C stan-
dard’s definition of allowed memory accesses is as poorly formalized as it is, and as
long as the standard’s ambiguity is invoked as excuse for compilers to invent their own,
undocumented, rules, these “subjective false positives” seem unavoidable.

14 Pascal Cuoq, Loic Runarvot, and Alexander Cherepanov

5.1 Expat

We applied the strict aliasing analyzer described in this article to Expat, a widely-
used C library for parsing XML. The first of several strict aliasing violation detected
by our analyzer has been reported??. This violation is caused by uses of struct types
with a common initial sequence as a poor man’s subtyping, as is otherwise extremely
common in object-oriented code written in C. In this case, the struct-with-common-
initial-sequence pattern is used in an attempt at implementing a generic hash-table
data structure.

typedef struct {
char *name;
} NAMED;

typedef struct {
char *name;
char *rawName;
/x [...1 */

} TAG;

typedef struct {
char *name;
PREFIX *prefix;
/x [...1 %/

} ELEMENT_TYPE;

typedef struct {

NAMED *x*v;
size_t size;
/% [...] %/

} HASH_TABLE

The two structs TAG and ELEMENT_TYPE have the same initial sequence as the struct
the hashtable is nominally intended to store pointers to, NAMED. The lookup function
retrieves an existing element, or, if none is found, allocates one of the size given as
parameter. This new element’s name member is initialized through the NAMED struct

type:

static NAMED x*
lookup (XML_Parser parser, HASH_TABLE *table, KEY name,
size_t createSize)
{
/* [...] find the element or resize the table */
/* The element was not found into the table: create it. */
table->v[i] = (NAMED *)table->mem->malloc_fcn(createSize);
if (!table->vI[il])
return NULL;
memset (table->v[i], 0, createSize);
table->v[i]->name = name;

22 https://sourceforge.net/p/expat/bugs/538/

Detecting Strict Aliasing Violations in the Wild 15

(table->used) ++;
return table->v[i];

In the analysis described in Sec. 4, the assignment table->v[i]->name = name sets
the effective type of the memory location being written to “member name of the struct
NAMED”. This means that subsequent read accesses to this part of memory must be
made through a pointer to the struct NAMED. Reading the memory location through a
pointer to another struct may interact badly with compiler optimizations, as shown in
the example functions st1 and st2.

static ELEMENT_TYPE *
getElementType (XML_Parser parser, const ENCODING *enc,
const char *ptr, const char *end)

{
DTD * const dtd = _dtd;
const XML_Char *name = poolStoreString(&dtd->pool, enc,

ptr, end);

ELEMENT_TYPE *ret;

if (!'name)
return NULL;
ret = (ELEMENT_TYPE *) lookup(parser, &dtd->elementTypes,
name, sizeof (ELEMENT_TYPE));
if ('ret)
return NULL;
if (ret->name '= name) {

} else {

The function getElementType exemplifies how the library Expat uses the value
returned by lookup. The member name is read through a pointer to the structure
ELEMENT_TYPE. This leads to a violation of strict aliasing as shown by the following
warning:

expat/lib/xmlparse.c:6470: [sa] warning: Reading a cell with

effective type (struct __anonstruct_NAMED_13).name[char x]

through the lvalue ret->name of type

(struct __anonstruct_ELEMENT_TYPE_22) .name[char *].

Callstack: getElementType :: expat/lib/xmlparse.c:4080 <-
doProlog :: expat/lib/xmlparse.c:3801 <-
prologProcessor :: expat/lib/xmlparse.c:3618 <-
prologInitProcessor :: expat/lib/xmlparse.c:1693 <-
XML_ParseBuffer :: expat/xmlwf/xmlfile.c:184 <-
processStream :: expat/xmlwf/xmlfile.c:243 <-
XML _ProcessFile :: expat/xmlwf/xmlwf.c:853 <-
main

16 Pascal Cuoq, Loic Runarvot, and Alexander Cherepanov

As part of the code normalization in the analyzer’s front-end, the anonymous struc-
tures receive names: in the example above, struct __anonstruct_ELEMENT_TYPE_ 22 is
the name given to struct { char *name; PREFIX *prefix; ... }.

The resolution of this bug report was to add -fno-strict-aliasing, a perfectly
reasonable solution for legacy C code.

5.2 Zlib

We applied our strict aliasing analyzer to the general-purpose data compression library
Z1ib. One strict aliasing violation was found and reported, and appears as a comment in
the source code®®. The violation®" is caused by accessing four unsigned char through
a pointer to unsigned int:

#define DOLIT4 ¢ "= *bufd++; c = crc_table[3][c & Oxff] ~ \
/* ... %/
#define DOLIT32 DOLIT4; DOLIT4; DOLIT4; DOLIT4; DOLIT4;\
DOLIT4; DOLIT4; DOLIT4

local unsigned long crc32_little(crc, buf, len)
unsigned long crc;
const unsigned char FAR *buf;
unsigned len;

register z_crc_t c;
register const z_crc_t FAR *buf4;
/* ... %/
buf4 = (const z_crc_t FAR *)(const void FAR *)buf;
while (len >= 32) {
DOLIT32;
len -= 32;
}
while (len >= 4) {
DOLIT4;
len -= 4;
}
VA N V4

In the simplified pattern above, the type z_crc_t is defined as unsigned int. Our
analyzer, when handling the statement buf4 = (const z_crc_t FAR *) (const void
FAR *)buf, sets the effective type of the variable buf4 to “pointer to unsigned char”
by ignoring the pointer conversions. Accessing to the object through the pointer buf4
is a violation of strict aliasing rules, as shown by the following warning of the analyzer:

z1lib/crc32.c:267: [sa] warning: Reading a cell with effective type char

2 https://github. com/madler/z1ib/commit/e08118c401d5434b7b3a57039263f4f
a9blf7dla

24 https://github.com/pascal-cuoq/zlib-fork/commit/d7cdel1e0b44f4e97cclf
d5250d826967841e614

Detecting Strict Aliasing Violations in the Wild 17

through the lvalue *tmp_O(buf4) of type unsigned int.
Callstack: crc32_little :: zlib/crc32.c:224 <-
crc32 :: zlib/inflate.c:1182 <-
inflate :: zlib/gzread.c:191 <-
gz_decomp :: zlib/gzread.c:248 <-
gz_fetch :: zlib/gzread.c:347 <-
gzread :: zlib/test/minigzip.c:439 <-

gz_uncompress :: zlib/test/minigzip.c:540 <-
file_uncompress :: zlib/test/minigzip.c:629 <-
main

In the warning, the temporary variable tmp_0, introduced by code normalization,
corresponds to the variable buf4 at that point of the function crc32_little.

6 Related work

The closest forms of analyses we are aware of are libcrunch[7] and SafeType[5]. The
tool libcrunch takes a dynamic approach and instruments pointer casts for violations
to be revealed when executing. Since our analyzer handles whole-programs only and can
behave as a C interpreter when deterministic inputs are provided, it is the most directly
comparable of the two. Safetype is a static analysis implemented inside a compiler, that
is, a modular static analysis that does not have access to the whole program. This in
itself is a source of both false positives and false negatives.

Each of libcrunch and SafeType warns at the level of the pointer conversion, for
instance when the address of an int ends up being converted to a float*. SafeType
can also warn about memory accesses with the wrong type. Our analysis warns at the
level of forbidden memory access only.

7 Conclusion

We have provided a number of examples showing the difficulty of analyzing C programs
precisely and soundly for strict aliasing violations. We think that working from exam-
ples is crucial in this endeavor because the description of the rules in the C standards
are particularly open to interpretation by both C developers and compiler authors.

An analyzer for strict aliasing violations is being implemented. Our target is legacy
C code. We think that this justifies our chosen, and as far as we know, original approach
of warning only for actual strict aliasing violations, as opposed to warning for suspicious
uses of pointers that may not technically break the rules. Legacy code should not be
modified willy-nilly: billions of systems may rely on it, and at the same time, this
software is not always maintained by the original developer, or even actively maintained
at all. Contrary to first appearances, a simple makefile change to explicitly disable strict
aliasing optimizations is an extremely satisfying outcome after successfully identifying
an illegal pattern with our analyzer. The analyzer can also help to eliminate the bad
patterns one by one, tweaking the code until the analyzer eventually remains silent,
but such is the respect due to legacy code that we do not expect this usage to be very
common.

Out of 18000 Debian packages indexed by Debian Code Search?®, 1001 pack-
ages contain the string -fno-strict-aliasing, and 131 contain the string may_alias,

25 nttps://codesearch.debian.net

18

Pascal Cuoq, Loic Runarvot, and Alexander Cherepanov

GCC’s extension to get the benefits of the type-based alias analysis while informing
the compiler that some specific memory accesses may be to a different effective type
than expected. Our goal is to make every package that needs it use one of these two
options. According to Debian Sources®®, 45% of the lines of code in Debian are written
in C, so a lot of work remains after the first two successful analyses of Expat and Zlib.

References

10.

11.

Canet, G., Cuoq, P., Monate, B.: A value analysis for C programs. In: Proceedings
of the 2009 Ninth IEEE International Working Conference on Source Code Analysis
and Manipulation. pp. 123-124. SCAM ’09, IEEE Computer Society, Washington,
DC, USA (2009), http://dx.doi.org/10.1109/SCAM.2009.22

Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proceedings
of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages. pp. 238-252. POPL ’77, ACM, New York, NY, USA (1977), http:
//doi.acm.org/10.1145/512950.512973

Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.:
Frama-c: A software analysis perspective. In: Proceedings of the 10th International
Conference on Software Engineering and Formal Methods. pp. 233-247. SEFM’12,
Springer-Verlag, Berlin, Heidelberg (2012), http://dx.doi.org/10.1007/978-3-
642-33826-7_16

Cuoq, P., Rieu-Helft, R.: Result graphs for an abstract interpretation-based static
analyzer. To appear

Ireland, I.: SafeType: Detecting type violations for type-based alias analysis of C.
Ph.D. thesis, University of Alberta (2013)

ISO: ISO/IEC 9899:2011 Information technology — Programming languages — C
(Dec 2011), http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue
_detail.htm?csnumber=57853

Kell, S.: Dynamically diagnosing type errors in unsafe code. In: Proceedings of the
2016 ACM SIGPLAN International Conference on Object-Oriented Programming,
Systems, Languages, and Applications. pp. 800-819. OOPSLA 2016, ACM, New
York, NY, USA (2016), http://doi.acm.org/10.1145/2983990.2983998
Krebbers, R.: The C standard formalized in Coq. Ph.D. thesis, Radboud University
(dec 2015)

Miné, A.: Field-sensitive value analysis of embedded ¢ programs with union types
and pointer arithmetics. SIGPLAN Not. 41(7), 54-63 (Jun 2006), http://doi.ac
m.org/10.1145/1159974.1134659

Siff, M., Chandra, S., Ball, T., Kunchithapadam, K., Reps, T.: Coping with Type
Casts in C, pp. 180-198. Springer Berlin Heidelberg, Berlin, Heidelberg (1999),
http://dx.doi.org/10.1007/3-540-48166-4_12

Yong, S.H., Horwitz, S., Reps, T.: Pointer analysis for programs with structures
and casting. SIGPLAN Not. 34(5), 91-103 (May 1999), http://doi.acm.org/10.
1145/301631.301647

26 nttps://sources.debian.net

